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3D-DRAM MITIGATES BANDWIDTH WALL

Modern system packing many cores = Bandwidth WaI .
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3D-DRAM + High-Capacity Memory = Hybrid Memory




USE 3D-DRAM AS A CACHE

fast

MCDRAM from Intel

Memory Hierarchy

slow

OS-visible Space

Using 3D-DRAM as a DRAM cache, can improve
memory bandwidth (and avoid OS/software change)




ARCHITECTING LARGE DRAM CACHES

Organize at line granularity (64B) for capacity/BW utilization

Gigascale cache needs large tag-store (tens of MBs)

4GB Data

Tags? 3D-DRAM
Too large for SRAM



ARCHITECTING LARGE DRAM CACHES

Organize at line granularity (64B) for high cache utilization

Gigascale cache needs large tag-store (tens of MBs)

4GB Data

3D-DRAM

Practical designs must store Tags in DRAM

How to architect tag-store for low-latency tag access?




EFFICIENT TAG ORGANIZATION (KNL CACHE)

DRAM ARRAY

ROW BUFFER
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Tag-With-Data [Alloy Cache, Intel Knights Landing]

ISingle Tag+Data Lookup (1x hit latency),
but direct-mapped

B

Practical designs are 64B line-size, store Tag-With-Data, and
are direct-mapped, to optimize for hit-latency.

Intel Knights Landing Product (MCDRAM) uses this DRAM-cache organization.




POTENTIAL OF ASSOCIATIVITY

Reduce 25%
of misses
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How can we make DRAM caches associative?

Assumes 16-core system, with 4GB DRAM-Cache, in front of PCM memory.




ASSOCIATIVITY OPTION 1: SERIAL TAG LOOKUP
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Serial Tag Lookup enables associativity,
but, it has serialization delay.



ASSOCIATIVITY OPTION 2: PARALLEL TAG LOOKUP

Way 0 Way 1

Address

A B

Parallel Lookup avoids serialization latency,
but, it infroduces 2x bandwidth cost.



ASSOCIATIVITY FOR DRAM CACHE (PARALLEL)
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Increasing associativity naively actually degrades
performance due to increased BW cost




ASSOCIATIVITY FOR DRAM CACHE (IDEAL)
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With latency / BW
of direct-mapped

Associativity must still maintain the latency/BW
of direct-mapped caches. How?




OPTION 3: WAY-PREDICTED TAG LOOKUP
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Way-Predicted Tag Lookup

Way-Predicted Tag Lookup can obtain improved hit-
rate, with BW / latency of direct-mapped cache.



WAY-PREDICTION ACCURACY & COST

MRU Pred
(1bit/set)

Partial-Tag
(4bit/line)

SRAM Storage

Way-Pred Accuracy

(2-way)
Accuracy (4-way) 74.3% 91.6%
Accuracy (8-way) 63.2% 81.2%

Prior methods for way-prediction have
low accuracy and/or have high storage overhead.




TOWARDS ASSOCIATIVITY W/ WAY-PREDICTION
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Way-Predicted Tag Lookup

Goal: Low storage-overhead and high accuracy
way-prediction, to enable associative DRAM cache



* Background

« ACCORD 4
— Probabilistic Way-Steering (PWS)
— Ganged Way-Steering (GWS)
— Skewed Way-Steering (SWS)

°* Summary
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INSIGHT: WAY-PREDICTABILITY AT LOW STORAGE?

Way 0 Way 1 Way 0 Way 1
I
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Base Install Policy (Rand) Tag-based Install Policy

Predict 100%!

Hard-to-predict (~50%) But, direct-mapped

Insight: Modifying install policy can make way-
prediction much simpler!




PROPOSAL: ACCORD
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AssoCiativity by CoORDinating way-install and prediction.
ACCORD achieves a way-predictable cache at low cost.



ACCORD OVERVIEW

~ Probabilistic Way-Steering (PWS) 4@



PROBABILISTIC WAY-STEERING

Page A,B

Bias=99°/// \{O%
Address Preferred

Way 0 Way 1

Static prediction: ~90%
Install using PWS
Will use both ways, improve hit-rate

PWS enables way-predictability, by trading speed of
learning to use both ways (hit-rate)




SENSITIVITY TO PWS PROBABILITY

Preferred-way Install Probability = x% bias to install in preferred way
-=-\Way-Pred Accuracy

100%
— 80% <

60% &

40% g

20% 3

0% %

60% 70% 80% 85% 90% =

Bias for selecting “preferred way”

2-way design Direct-mapped




SENSITIVITY TO PWS PROBABILITY
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SENSITIVITY TO PWS PROBABILITY
5.6% speedup
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Preferred-way Install Probability

Preferred-way Install Probability (85%) provides best
trade-off of hit-rate for WP accuracy, for 5.6% speedup.




ACCORD OVERVIEW

— Ganged Way-Steering (GWS) «



GANGED WAY-STEERING

Preferred Preferred
Address Way 0 Way 1 Address Way 0 Way 1
3

Pred ~50% Pred >90%
Probabilistic Way-Steering Ganged Way-Steering

Per-line randomized decision Per-page rand decision

Ganged Way-Steering makes install decision at large granularity,
to improve predictability for workloads with high spatial locality.




GANGED WAY-STEERING IMPLEMENTATION

Guide Install

Install RegionlD Way
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GWS Per-Region Last-Way install + Last-Way prediction.
64-entry RIT and 64-entry RLT needs only 320 Bytes.



PWS+GWS WAY-PREDICTION ACCURACY

GWS enables spatial workloads to
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Combination of PWS+GWS achieves 90% accuracy,

at the cost of 320B storage.




PWS+GWS (ACCORD 2-WAY) RESULTS
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7.3% speedup
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PWS+GWS
PWS Perfect

PWS + GWS gets 7.3% of 10% speedup of
perfectly-predicted 2-way cache.

System assumes 4GB DRAM Cache, and PCM-based main memory.




ACCORD OVERVIEW

— Skewed Way-Steering (SWS) «



DIFFICULTY IN SCALING TO N-WAYS

* Scaling ACCORD to N-ways
— ACCORD 4-way has 3% speedup
— ACCORD 8-way has 6% slowdown...

Address E Way0 Way1l Way2 Way3

|—>__;I_H_;l_| [E__] Miss!
I |

* Miss confirmation: N-way cache needs N accesses
to confirm line is not resident

We need solutions to reduce miss-confirmation




SOLUTION: SKEWED WAY-STEERING

4-way with 2-skew:
Access: ABC
One Preferred + One Alternate way

Way 0W3y 1Way 2W3y 3
Access:
E

Only 2 lookups to determine miss

Restricting placement, reduces miss-confirmation =
hit-rate benefits without any storage overhead



SPEEDUP FROM ACCORD (WITH SWS)

2-Way 4-Way 8-Way

SWS 8-way achieves 11% speedup




* Background

* ACCORD
— Probabilistic Way-Steering (PWS)
— Ganged Way-Steering (GWS)
— Skewed Way-Steering (SWS)

* Summary 4a

32



SUMMARY OF ACCORD

= ACCORD: associative DRAM caches by coordinating way-
install and way-prediction.

= Probabilistic Way-Steering

= Biased-install enables accurate static way-prediction

= Ganged Way-Steering

= Region-based install enables accurate region-based way-prediction

= Skewed Way-Steering

= Skew enables flexibility in line placement, while maintaining miss cost

= ACCORD enables associativity at negligible storage cost
(320B), to achieve 11% speedup.



ACCORD BACKUP SLIDES

ACCORD backup slides



REPLACEMENT POLICY?

 LRU
— State in SRAM

» 1-bit per line needs 8MB. Size of Last-level cache

— State in DRAM

* 9% slowdown due to state-update cost (Hit to alternate way)



COMPARISON TO OTHER WAY PREDICTORS
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ACCORD outperforms other predictors while
needing negligible storage overhead (320 B)




COLUMN-ASSOCIATIVE CACHE

* Column-associative / Hash-Rehash cache
— Install lines in preferred way (way-0)
— On eviction, move line to alternate way (way-1)
— On hit to alternate way, move to preferred way

* Effectiveness
— In general, way-prediction accuracy similar to MRU

— But, requires significant bandwidth to swap lines on hit
to alternate way. CA-cache thus causes 4% slowdown.



