ACCORD: Associativity for DRAM Caches by

Coordinating Way-Install and Way-Prediction

ISCA 2018

Vinson Young (GT)
Authors: Chiachen Chou (GT)

Aamer Jaleel (NVIDIA)

Moinuddin K. Qureshi (GT)

GeorglaJ fL U JW €

3D-DRAM MITIGATES BANDWIDTH WALL

Modern system packing many cores = Bandwidth WaI .

DRAM Layers_ .
\ ¢/ 4-8xBandwidth
(of traditional memory)

x Limited Capacity

g Loglc Layer

<

" Substrate

3D-Stacked DRAM

_
—
—_
_—
—_—
-
—_
=
—
—
=
=S
—
—

23
2=,
3%
274
- pO
XY i
FERt
i
jig
¥
r:E,
ISR

Memory

3D-DRAM + High-Capacity Memory = Hybrid Memory

USE 3D-DRAM AS A CACHE

fast

MCDRAM from Intel

Memory Hierarchy

slow

OS-visible Space

Using 3D-DRAM as a DRAM cache, can improve
memory bandwidth (and avoid OS/software change)

ARCHITECTING LARGE DRAM CACHES

Organize at line granularity (64B) for capacity/BW utilization

Gigascale cache needs large tag-store (tens of MBs)

4GB Data

Tags? 3D-DRAM
Too large for SRAM

ARCHITECTING LARGE DRAM CACHES

Organize at line granularity (64B) for high cache utilization

Gigascale cache needs large tag-store (tens of MBs)

4GB Data

3D-DRAM

Practical designs must store Tags in DRAM

How to architect tag-store for low-latency tag access?

EFFICIENT TAG ORGANIZATION (KNL CACHE)

DRAM ARRAY

ROW BUFFER

72¢ [DGEEN

72¢ [N

Tag-With-Data [Alloy Cache, Intel Knights Landing]

ISingle Tag+Data Lookup (1x hit latency),
but direct-mapped

B

Practical designs are 64B line-size, store Tag-With-Data, and
are direct-mapped, to optimize for hit-latency.

Intel Knights Landing Product (MCDRAM) uses this DRAM-cache organization.

POTENTIAL OF ASSOCIATIVITY

Reduce 25%
of misses

S
e 1
(] i
o
T

NG
N ‘?/'$K>($ ‘23’$

How can we make DRAM caches associative?

Assumes 16-core system, with 4GB DRAM-Cache, in front of PCM memory.

ASSOCIATIVITY OPTION 1: SERIAL TAG LOOKUP

Way 0 Way 1
Address
A~> B
I
i
|
|
v (If miss v
A" B

Serial Tag Lookup enables associativity,
but, it has serialization delay.

ASSOCIATIVITY OPTION 2: PARALLEL TAG LOOKUP

Way 0 Way 1

Address

A B

Parallel Lookup avoids serialization latency,
but, it infroduces 2x bandwidth cost.

ASSOCIATIVITY FOR DRAM CACHE (PARALLEL)

90 15
Reduce 25% =
< of misses = -46%
380 E, 1
()]
5 ! » =
=70 | D05
T o
o
(@p)]
N A A A ° N A
O\ O 2\ N3N
SR SN

Increasing associativity naively actually degrades
performance due to increased BW cost

ASSOCIATIVITY FOR DRAM CACHE (IDEAL)

90 1.5 1.5
Reduce 25% = =) 21%
. @D () (0
Q of misses | -46% =
80 5 S
§ t - l » %
>
= 70 . Qo5 . 505
T o o)
S 3
» 7
NG) N DS ° N DS
RS GRS R
NV A A

With latency / BW
of direct-mapped

Associativity must still maintain the latency/BW
of direct-mapped caches. How?

OPTION 3: WAY-PREDICTED TAG LOOKUP

Way 0 Way 1l
Address
A 4
Way AN B
Prediction :
|
i
:
i If miss é

Way-Predicted Tag Lookup

Way-Predicted Tag Lookup can obtain improved hit-
rate, with BW / latency of direct-mapped cache.

WAY-PREDICTION ACCURACY & COST

MRU Pred
(1bit/set)

Partial-Tag
(4bit/line)

SRAM Storage

Way-Pred Accuracy

(2-way)
Accuracy (4-way) 74.3% 91.6%
Accuracy (8-way) 63.2% 81.2%

Prior methods for way-prediction have
low accuracy and/or have high storage overhead.

TOWARDS ASSOCIATIVITY W/ WAY-PREDICTION

Way 0 Way 1
Address
A 4
Way AN B
Prediction :
|
i
:
i If miss é

Way-Predicted Tag Lookup

Goal: Low storage-overhead and high accuracy
way-prediction, to enable associative DRAM cache

* Background

« ACCORD 4
— Probabilistic Way-Steering (PWS)
— Ganged Way-Steering (GWS)
— Skewed Way-Steering (SWS)

°* Summary

15

INSIGHT: WAY-PREDICTABILITY AT LOW STORAGE?

Way 0 Way 1 Way 0 Way 1
I
ODD ODD
F% _ oDD
I I
Base Install Policy (Rand) Tag-based Install Policy

Predict 100%!

Hard-to-predict (~50%) But, direct-mapped

Insight: Modifying install policy can make way-
prediction much simpler!

PROPOSAL: ACCORD

vl "
Way Install Way 0 Way 1 Way Predictor
Policy
»l A2 |«
A3 B3
B5
B7

AssoCiativity by CoORDinating way-install and prediction.
ACCORD achieves a way-predictable cache at low cost.

ACCORD OVERVIEW

~ Probabilistic Way-Steering (PWS) 4@

PROBABILISTIC WAY-STEERING

Page A,B

Bias=99°/// \{O%
Address Preferred

Way 0 Way 1

Static prediction: ~90%
Install using PWS
Will use both ways, improve hit-rate

PWS enables way-predictability, by trading speed of
learning to use both ways (hit-rate)

SENSITIVITY TO PWS PROBABILITY

Preferred-way Install Probability = x% bias to install in preferred way
-=-\Way-Pred Accuracy

100%
— 80% <

60% &

40% g

20% 3

0% %

60% 70% 80% 85% 90% =

Bias for selecting “preferred way”

2-way design Direct-mapped

SENSITIVITY TO PWS PROBABILITY

— 14%
12%
10%
8%
6%
4%
2%
0%

Miss Reduction (%

Miss Reduction (%)

-=-\Way-Pred Accuracy

100%

80%
60%
40%
20%

60%

2-way design

70%

80%

85%

Preferred-way Install Probability

0%
90%

Direct-mapped

Way-Pred Accuracy (%)

SENSITIVITY TO PWS PROBABILITY
5.6% speedup

Bl Speedup Miss Reduction (%) -=Way-Bréd Accuracy

< 14% 100%
=S 12% o, =
S X 10% 28;" >
S : C
5 g 8% sy 55% 5.3% >3
3T 6% 3.7% ° 40% 2
L o 4% 26% <
5 & 2% l I 00% | 0% B
> 0% ' 0% %

50% 60% 70% 80% 90% 100% =

Preferred-way Install Probability

Preferred-way Install Probability (85%) provides best
trade-off of hit-rate for WP accuracy, for 5.6% speedup.

ACCORD OVERVIEW

— Ganged Way-Steering (GWS) «

GANGED WAY-STEERING

Preferred Preferred
Address Way 0 Way 1 Address Way 0 Way 1
3

Pred ~50% Pred >90%
Probabilistic Way-Steering Ganged Way-Steering

Per-line randomized decision Per-page rand decision

Ganged Way-Steering makes install decision at large granularity,
to improve predictability for workloads with high spatial locality.

GANGED WAY-STEERING IMPLEMENTATION

Guide Install

Install RegionlD Way

|—> 0x001 0

Recent Install

Table (RIT)

Predict Way
RegionIlD Way Access
A2
A3 B3 |«
Recent Lookup
BS |«
BT |« Table (RLT)

GWS Per-Region Last-Way install + Last-Way prediction.
64-entry RIT and 64-entry RLT needs only 320 Bytes.

PWS+GWS WAY-PREDICTION ACCURACY

GWS enables spatial workloads to

PWS hash'é-gé

100%
95%
90%
85%
80%
75%
70%

Way-Pred Acc (%)

PWS PWS+GWS

Libquantum

%eté?-sﬁ)@%%f@(%% racy

95%
90%
85%
80%
75%
70%

PWS PWS+GWS
Average (21 workloads)

Combination of PWS+GWS achieves 90% accuracy,

at the cost of 320B storage.

PWS+GWS (ACCORD 2-WAY) RESULTS

12%
10%
a 8%
=
g 6%
o
n 4%
2%
0%

7.3% speedup

B

PWS+GWS
PWS Perfect

PWS + GWS gets 7.3% of 10% speedup of
perfectly-predicted 2-way cache.

System assumes 4GB DRAM Cache, and PCM-based main memory.

ACCORD OVERVIEW

— Skewed Way-Steering (SWS) «

DIFFICULTY IN SCALING TO N-WAYS

* Scaling ACCORD to N-ways
— ACCORD 4-way has 3% speedup
— ACCORD 8-way has 6% slowdown...

Address E Way0 Way1l Way2 Way3

|—>__;I_H_;l_| [E__] Miss!
I |

* Miss confirmation: N-way cache needs N accesses
to confirm line is not resident

We need solutions to reduce miss-confirmation

SOLUTION: SKEWED WAY-STEERING

4-way with 2-skew:
Access: ABC
One Preferred + One Alternate way

Way 0W3y 1Way 2W3y 3
Access:
E

Only 2 lookups to determine miss

Restricting placement, reduces miss-confirmation =
hit-rate benefits without any storage overhead

SPEEDUP FROM ACCORD (WITH SWS)

2-Way 4-Way 8-Way

SWS 8-way achieves 11% speedup

* Background

* ACCORD
— Probabilistic Way-Steering (PWS)
— Ganged Way-Steering (GWS)
— Skewed Way-Steering (SWS)

* Summary 4a

32

SUMMARY OF ACCORD

= ACCORD: associative DRAM caches by coordinating way-
install and way-prediction.

= Probabilistic Way-Steering

= Biased-install enables accurate static way-prediction

= Ganged Way-Steering

= Region-based install enables accurate region-based way-prediction

= Skewed Way-Steering

= Skew enables flexibility in line placement, while maintaining miss cost

= ACCORD enables associativity at negligible storage cost
(320B), to achieve 11% speedup.

ACCORD BACKUP SLIDES

ACCORD backup slides

REPLACEMENT POLICY?

 LRU
— State in SRAM

» 1-bit per line needs 8MB. Size of Last-level cache

— State in DRAM

* 9% slowdown due to state-update cost (Hit to alternate way)

COMPARISON TO OTHER WAY PREDICTORS

12%
10%
8%
g. 6%
Lk 4%
Q 2%
v 0%
-2%
-4%

-6%
> & © @

O
F X P &
& & o

ACCORD outperforms other predictors while
needing negligible storage overhead (320 B)

COLUMN-ASSOCIATIVE CACHE

* Column-associative / Hash-Rehash cache
— Install lines in preferred way (way-0)
— On eviction, move line to alternate way (way-1)
— On hit to alternate way, move to preferred way

* Effectiveness
— In general, way-prediction accuracy similar to MRU

— But, requires significant bandwidth to swap lines on hit
to alternate way. CA-cache thus causes 4% slowdown.

