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Abstract
Virtualization enables a platform to have an increased number  
of logical processors by multiplexing the underlying resources 
across different virtual machines. The hardware resources are 
time-shared not only among different virtual machines (VMs), but 
also among different workloads of the same VM. An important source 
of performance degradation in such a scenario are the cache-warmup 
penalties that a workload experiences when it’s scheduled, because 
the working set belonging to the workload gets displaced by other 
concurrently running workloads. We show that a VM that time-switches 
among four workloads can cause some of the workloads a slowdown 
of as much as 54%. However, such performance degradation depends 
on the workload behavior, with some workloads experiencing 
negligible degradation and some severe degradation.

We propose Elastic Time Slicing (ETS) to reduce the context-switch 
overhead for the most-affected workloads. We demonstrate that 
by taking the workload-specific context-switch overhead into 
consideration, the CPU scheduler can make better decisions to 
minimize the context-switch penalty for the most-affected workloads, 
thereby resulting in substantial performance improvements. ETS 
enhances performance without compromising on response time, 
thereby achieving dual benefits. To facilitate ETS, we develop a 
low-overhead hardware-based mechanism that dynamically 
estimates the sensitivity of a given workload to context switching.  
We evaluate the accuracy of the mechanism under various cache-
management policies and show that it is very reliable. Context-
switch–related warmup penalties increase as optimizations are 
applied to address traditional cache misses. For the first time, we 
assess the impact of advanced replacement policies and establish 
that it is significant.

1. Introduction
Virtualization enables sharing of hardware resources by multiple 
guest operating system (OS) instances. The resources are shared 
not only among different VMs, but also among different workloads 
of the same VM. To facilitate high utilization through consolidation, 
the system must support a large number of workloads. Some systems 
adopt coarse-grained division at the level of single cores, and others 
employ fine-grained division through time-sharing a core among 
workloads [1]. The latter phenomenon is referred to as multitasked 
virtualization. Factors such as cost, security, and system-management 

convenience lead to more workloads per system. The transition 
from dedicated workstations to virtualized desktop infrastructure 
environments is another trend in this direction.

In a virtualized environment with multiple workloads per VM, the 
time slice allocated to a VM is split equally among the constituent 
workloads [1]. As a result, each workload obtains a share of the time 
slice allotted to the VM, which is inversely proportional to the number 
of workloads. Such an aggressively multitasked environment serves as 
the basis for our work. Multitasked virtualization affects performance 
in two ways: (1) direct overhead incurred to switch among the 
workloads and (2) indirect overhead incurred due to the displacement 
of the system state. The second factor contributes significantly to the 
performance degradation and can be further viewed as composed 
of multiple components: lost register, translation look-aside buffer, 
branch predictor, and cache states. Among these components, the 
major overhead is due to the displaced state in the last-level cache 
(LLC) [1] and is the focus of this work. We designate the additional 
cache misses suffered due to a context-switch (CS) event as CS misses. 
The performance penalty associated with CS misses is severe in the 
case of multitasked virtualization, due to an additional degree of 
multitasking above and beyond the OS-level multitasking.

Modern computer systems feature large-LLC and long-latency main 
memory. When run on such systems, memory-intensive tasks cache 
a large volume of data in the LLC. We use the terms workload, task, 
and application as synonyms. After running a task of interest for the 
duration of its time-slice value, when the CPU scheduler context-
switches to a different task or a set of different tasks, the cache 
lines belonging to the former are replaced by those of the latter. 
Depending on the memory-access behavior of the intervening 
tasks, when the task of interest gets a schedule on the processor 
again, it is likely to encounter a partially or completely cold cache. 
Depending on the memory-reuse behavior of the task of interest, 
its performance could be affected across the spectrum ranging 
from no or slight degradation to significant degradation. Some 
tasks experience only slight degradation because sometimes 
caches hold data irrelevant to future accesses [2].

We illustrate the variation in CS penalty across applications by 
using an example. Figure 1 shows the impact of CS events on the 
performance of two different applications. On a CS event, the 
cache warmup penalty is minimal for application (a) and significant 
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for application (b). Whereas (a) is not sensitive to CS events, (b) is 
highly sensitive. Even though the complete cache state is lost in 
case of both applications (a) and (b) on a CS event, (a) suffers only 
minor performance degradation because its data reuse is low.  
(b) suffers significant performance degradation because its data 
reuse is high. In the following section, we use actual data to show 
that different tasks suffer from CS misses differently. For a task 
that suffers from CS misses significantly, a small time-slice value 
causes the task to experience CS events and CS misses more times 
than a large time-slice value. This phenomenon translates to an 
increase in the execution time of the task and a corresponding 
increase in the energy consumed across the entire system. The 
problem can be addressed by allocating fewer but longer time 
slices to the most-affected tasks (as illustrated in Figure 1(c)).

In this paper, we propose ETS to reduce the CS miss penalty. 
Whereas a uniform time-slicing (UTS) CPU-scheduling algorithm 
allocates time slices of equal duration to all tasks irrespective of 
their specific CS miss behavior, an ETS CPU-scheduling algorithm 
analyzes the CS miss behavior of the tasks and allocates fewer but 
longer time slices to those tasks that suffer significant performance 
degradation due to CS events. Performance penalty due to CS events 
can be naïvely addressed by allocating 10ms time slices to all tasks. 
10ms is the default time-slice value allocated by the Linux OS. However, 
this solution suffers from high latency or response time between 

consecutive schedules, as depicted in Figure 2. In contrast, a UTS 
algorithm with 2.5ms time slices achieves low latency between 
consecutive schedules, but it suffers from low performance. 2.5ms  
is obtained by dividing 10ms equally among four tasks of a VM. 
Our ETS algorithm combines the best of both worlds and offers 
high performance (within 4% of UTS-10) as well as low latency 
(similar to UTS-2.5).

Enabling ETS requires dynamically estimating the extent to which  
a task suffers from CS misses. We develop a low-cost hardware-
based Monte Carlo mechanism to estimate the cost of a CS event 
in terms of the number of CS misses suffered. The CS cost estimator 
works reliably under various cache-management policies because 
it is based on sampling of actual CS miss information. It facilitates 
incorporating the information about CS miss behavior into the design 
of a CPU-scheduling algorithm and exploiting the potential of such 
an enhanced CPU scheduler.

Most solutions that attempt to improve the cache hit rate by 
addressing the traditional cache misses (such as those due to 
capacity, conflict, coherence, and replacement) accentuate the 
problem of CS misses. These include: increasing the capacity of 
cache, employing compression in cache, prefetching lines into 
cache, improving the replacement algorithm, and so on. The 
number of CS misses tends to increase with increase in cache 
capacity (section 6.2) and improvement in replacement algorithm 
(section 6.1), thus worsening the problem. This paper shows that  
as systems optimize cache organization, addressing the problem 
associated with CS misses becomes more important, and a scheme 
like ETS becomes even more relevant.

2. Motivation
The locality properties of applications vary, and hence losing  
the cache state due to context switch can lead to variation in 
performance degradation for different applications. To demonstrate 
this, we conducted an experiment by reducing the allocated time-
slice value. Figure 3 shows the variation in slowdown (measured in 
terms of cycles per instruction [CPI]) for SPEC CPU2006 benchmarks 
as the assigned time-slice value is reduced from 10ms. We flush the 
caches after each time slice to emulate a CS event. The rationale 
behind flushing the caches on a CS event will be described shortly. 
The parameters of the simulation infrastructure used to generate 
the results provided in Figure 3, and the basis for the choice of the 
parameters, are provided in section 4. Here, we capture the important 
aspects in order to enable comprehension of Figure 3. The results 
correspond to a LLC capacity of 2MB. We consider a processor 
running at a frequency of 4GHz. On such a processor, 10 million 
elapsed cycles correspond to an execution time of 2.5ms. The 
Y-axis represents the CPI corresponding to the execution of 500 
million instructions. The labels 2.5ms and 5ms correspond to the 
cases when the VM comprises four and two workloads respectively, 
and a time-slice value of 10ms allocated to the VM is divided equally 
among the workloads. The CPI values for labels 2.5ms and 5ms  
are normalized with respect to the values corresponding to 10ms.  
A large value on the Y-axis corresponds to a higher CPI and, 
therefore, the smaller the Y-axis value the better.
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Figure 1. (a) When CS penalties are small, using short time slices does not cause any 
noticeable overhead. (b) For some workloads, short time slices can cause significant 
slowdown. (c) Only for such workloads is using longer and infrequent time slices desirable.

Figure 2. ETS provides the performance benefits of UTS with 10ms time slices as well 
as the latency benefits of UTS with 2.5ms time slices.
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We show the behavior for all 29 SPEC CPU2006 benchmarks in 
Figure 3 to make our case. The benchmarks are sorted in ascending 
order of the performance degradation incurred as the allocated 
time-slice value is reduced. Throughout this paper, we identify  
the benchmarks in figures using the first four letters of their 
names. For applications that appear on the left of the figure,  
the CPI varies very little as the duration of the time-slice value is 
reduced from 10ms to 2.5ms. However, the CPI varies significantly  
in the case of applications that appear on the right. For the remaining 
applications, the variation in CPI as the time-slice value is decreased 
is distributed across the spectrum. The maximum degradation for 
a 2.5ms time slice is observed in case of HMMER and is 54%. An 
analysis of the results reveals that different applications indeed 
suffer from CS events differently; some suffer mildly while others 
suffer severely. Further, the CS performance penalty varies over the 
duration of execution of an application (section 5.1). The variation 
in performance degradation can be addressed by adopting ETS. 
The key insight behind ETS is to allocate fewer but longer time 
slices to address the performance penalty incurred by the most-
affected workloads. To facilitate ETS, a dynamic mechanism is 
essential for estimating the extent to which an application suffers 
from CS events. We now describe an assumption and justify the 
reason for making it before presenting the dynamic mechanism.

We assume that the data cached by an application in the LLC during 
the duration of its time slice is completely evicted by the data brought 
in by the intervening applications, before it is scheduled again. This 
assumption holds because of the aggressive multitasking employed 
by the virtualized systems described in section 1. We co-scheduled 
eight applications in a round-robin (RR) fashion, each for a time-slice 
duration of 2.5ms. This co-schedule is analogous to a scenario in 
which there are two VMs, each containing four workloads. The 
baseline time-slice value of 2.5ms is obtained by dividing 10ms 
equally among the workloads comprising a VM. The values we 
considered for the number of VMs and the number of workloads  
in this work are conservative. The actual numbers are even larger 
[1] [3], and our assumption is still valid under such conditions. We 
evaluated 30 different co-schedules, each made up of eight distinct 
applications, and observed the number of residual lines from one 
schedule of the application to its next schedule. Residual lines are 
those lines that remain in the cache from one schedule to the next. 
Over the total duration of execution, the number of residual lines 
for all applications is zero. Similar behavior was also observed in 
previous works [1] [3]. Even though the base time-slice value is 

small, when the execution of interleaved applications is considered, 
the total time is sufficient for an application’s data in the LLC to be 
evicted completely. This phenomenon has two implications. First, 
invalidating the cache entries faithfully emulates a CS event. Second, 
there is no negative impact due to extending the time-slice value 
of an application on those applications whose time-slice value 
remains unchanged.

3. Framework for Estimating and Addressing  
the CS Performance Penalty
The motivational results presented in section 2 suggest that a dynamic 
mechanism is essential for estimating the penalty incurred due to a 
CS event. Such a mechanism can be used to characterize the impact 
of a CS event on an application. Now we describe the mechanism 
designed to estimate the cost of a CS event in terms of the number 
of CS misses incurred. The mechanism is capable of computing the 
cost of a CS event effectively while incurring a minimal overhead. 
Further, we present an augmentation to the baseline UTS RR CPU-
scheduling algorithm in order to derive an ETS RR CPU-scheduling 
algorithm. The latter is capable of leveraging the calculated cost  
of CS events to mitigate the performance degradation.

3.1 Cost Estimation of a CS Event
The number of CS misses suffered by an application can be 
estimated in a simple but inefficient manner by making a copy of 
the tag directory (of the cache) on a CS event. When the application 
obtains a schedule again, the accesses that miss in the main tag 
directory but hit in the copy tag directory are tracked. The number 
of such accesses corresponds to the number of CS misses suffered. 
This simple scheme suffers from the following drawbacks. If there 
are multiple co-scheduled applications, we need a corresponding 
number of copy tag directories, which incur a significant area 
overhead. Multiple copy tag directories can be avoided by storing  
all but the one required (at any given time) in the memory. This 
approach requires maintaining space in the memory and logic to 
store and restore the copy tag directory to and from the memory 
respectively. Further, additional memory bandwidth is required to 
perform the store and restore operations. Now we propose a solution 
that overcomes these disadvantages. The solution is based on the 
following key ideas. CS miss count can be estimated by emulating 
a CS event. This requires only one copy tag directory (Figure 4a). The 
hardware overhead due to the copy tag directory can be reduced 

Figure 3. Variation in slowdown (measured in terms of CPI) as the time-slice value is 
reduced for SPEC CPU2006 benchmarks. The impact of CS events is significant on 
some workloads and imperceptible on others.

Figure 4. (a) The MTD (wide) and the full ATD (narrow) (b) The MTD (wide) and the 
ATD (narrow) with sample sets (c) An entry in the MTD (wide) and the ATD (narrow) 
(d) Status of accesses in the MTD and the ATD after a CS event.
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by maintaining copy tags only for a fraction of the sets in the cache 
(Figure 4b). Further, the copy tag directory entry needs to contain 
only one bit of information (a valid bit), as opposed to a main tag 
directory entry that contains a valid bit, address bits, and other 
metadata (Figure 4c).

The working of our cost-estimation framework is modeled after 
that of a Monte Carlo (MC) method. MC methods rely on random 
sampling to determine an approximate answer to a question. In 
general, the answer determined using a MC method becomes 
more accurate as the number of samples considered increases. 
The proposed mechanism consists of an auxiliary tag directory 
(ATD) in addition to the regular main tag directory (MTD) in the 
cache. The ATD contains tags corresponding to a certain number 
of sets in the MTD. These sets in the MTD are referred to as sample 
sets (SS). We reason about the exact number of SS required in 
section 5. An entry in the ATD contains only one bit of information 
and can be either valid or invalid. It should be noted that a hit in 
the ATD is analogous to the line being valid and a miss to the line 
being invalid. At the start of execution, the state of SS in the MTD 
and the ATD is consistent, which means that lines in the MTD and 
the ATD are either both valid or both invalid.

To estimate the number of CS misses for an application, the entries 
in the ATD are invalidated. This process emulates a CS event. After 
the point of invalidation, corresponding to subsequent cache accesses, 
one of the following scenarios can arise (Figure 4d): access hits in 
both the MTD and the ATD, access misses in both the MTD and the 
ATD, or access hits in the MTD but misses in the ATD. The first two 
events are not of interest to us. The third event corresponds to a 
CS miss. A miss in the ATD and a hit in the MTD happen because 
the ATD experienced a cache-flush event, which is analogous to  
a CS event. The corresponding entry in the ATD is made valid on 
recording the CS miss. So, further accesses to the same cache line 
do not generate CS misses. The ATD entry corresponding to the 
second event is made valid as well. We use a counter (CS-MISS-
CNT) to keep track of the CS misses. The counter value is read at 
the time when the application is being switched out. It indicates 
the number of CS misses suffered by SS. To estimate the total 
number of CS misses experienced by the application, the counter 
value is multiplied with the ratio of the total number of sets to the 
number of SS. This ratio is chosen to be a power of 2 so that the 
multiplication operation degenerates to a simple left-shift operation. 
After the invalidation point, an event corresponding to a miss in 
the MTD and a hit in the ATD does not happen by construction 
(Figure 4d). The set of hits in the ATD is always a proper subset  
of the set of hits in the MTD. We depict the steps for estimating  
the CS miss count in Algorithm 1, using pseudocode.

The mechanism proposed above aids in estimating the number of 
CS misses for a private cache. The trend in modern computer systems 
is to employ simultaneous multiple threading (SMT) and/or multiple 
cores to enhance performance while keeping power consumption 
in check. We refer to the hardware thread instances in the case of 
SMT and the cores in a multicore processor commonly as sharers. 
When the cache is shared by two or more sharers, the CS cost-
estimation mechanism needs to be augmented as follows to 
support the cost estimation for each sharer. The modification 

required is to replicate CS-MISS-CNT counter per sharer. Because 
lines belonging to each sharer are uniquely identified in the tag entry 
of the cache, the identifier can be used to match and update the 
corresponding counter. Note that one copy of the ATD is sufficient 
irrespective of the number of sharers.

3.2 Design of an ETS RR CPU-Scheduling Algorithm
Previously, we pointed out that fewer but longer time slices must be 
used for those applications that are severely impacted by CS events. 
By doing so, we can alleviate the negative impact of CS events on 
the performance of such applications. In this section, we describe 
the design of a CPU-scheduling algorithm that achieves this goal. 
Specifically, we augment the baseline UTS RR CPU-scheduling 
algorithm to derive an ETS RR CPU-scheduling algorithm. Recall 
that we described the distinction between the two in section 1. To 
keep the discussion precise, we choose the following values for 
parameters (same as the values used throughout this paper).  
The baseline UTS algorithm allocates a time-slice value of 2.5ms  
for all applications in a RR fashion. We consider a system with a 
LLC capacity of 2MB. The cache consists of a total of 32,768 lines, 
each of size 64 bytes. The ETS algorithm categorizes these lines 
into four groups, as shown in the Group column of Table 1. The 
groups are based on the number of CS misses. For an application 
belonging to a particular group, the algorithm extends the time 
slice to the value indicated in the Slice column. The size of the 
group is doubled from one group to the next, and the time-slice 
value is increased by 2.5ms. In this manifestation, we capped the 
maximum time-slice value at 10ms. In an actual system, we expect 
that this value will be set after taking the response-time constraints 
and other factors into consideration.

GROUP SLICE GROUP SLICE

(1) ≤1,500 2.5 ms (2) 1,501 - 4,500 5.0 ms

(4) >10,501 10 ms (3) 4,501 - 10,500 7.5 ms

Table 1. An ETS round-robin CPU-scheduling algorithm implementation. CS miss 
count is used as index in order to determine the time slice value for the next schedule.

We measure the number of CS misses experienced by the application 
every time it obtains a schedule on the processor. The number of 
misses estimated using Algorithm 1 is used as index into Table I. The 
corresponding value of Slice is assigned as the time-slice value for 
the next schedule of the application. It must be noted that the 
discretization presented in Table 1 is realized in software and therefore 
can be customized to a target system. We developed the presented 
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initialize() { 
 invalidate entries in ATD; CS-MISS-CNT = 0; }

count_cs_misses() { 
  if ((MTD.lookup == hit) &&  

(ATD.lookup == miss)) CS-MISS-CNT++; }

estimate_cs_penalty() { 
  CS-MISS-CNT X (number-of-sets-in-cache/ 

number-of-sample-sets); }

Algorithm 1. CS cost computation in terms of the number of CS misses
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discretization by heuristically running the benchmarks and analyzing 
the results. A high-level overview of the working of the ETS framework 
is provided as a flow chart in Figure 5.

It is not our objective to propose an alternative CPU-scheduling 
algorithm. There is a large body of work that investigated such 
algorithms. However, we argue that these algorithms must be 
supplemented to make them aware of the cost of the CS events. 
The design of the scheduling algorithm could incorporate CS miss 
information together with other currently used factors such as 
priority and interactivity. Here, we described how a UTS RR  
CPU-scheduling algorithm can be augmented to account for  
the CS penalty incurred.

4. Experimental Methodology
We use an in-house trace-driven simulator to conduct the 
experiments. The processor is modeled as an in-order core, and 
the simulator is capable of handling multiple cores. The memory 
hierarchy consists of three levels of caches: separate instruction 
and data caches at the first level, and unified caches at the middle 
and the last levels. A uniform value of 64 bytes is used for line size 
across the entire hierarchy. We use a baseline value of 2MB for the 
LLC capacity in our experiments. Our simulator can model the LLC 
as private to each core or as shared among multiple cores. In either 
case, multiple applications can be co-scheduled on each core. All 
cache levels implement the LRU replacement policy. The 
parameters of the simulated machine are shown in Table 2.

Processor 4GHz, Single Issue, In-Order

L1 I-cache 32KB, 2-way

L1 D-cache 32KB, 2-way

L2 cache 256KB, 4-way

LLC 2MB, 16-way, 24 cycles

Main memory 400 cycles

Table 2. Machine configuration

In the event of a context switch, the employed framework eliminates 
effects other than the loss of saved state in the LLC. We use all 
benchmarks (29 in number) from the SPEC CPU2006 suite to 
obtain a comprehensive set of results. Each benchmark is comprised 
of a representative set of 500 million instructions. For our experiments, 
we combined disparate benchmarks to generate 29 diverse workload 
mixes (co-schedules). When an LLC capacity other than 2MB is used, 
we keep the associativity constant and increase the number of sets. 
We apply the CS cost-estimation mechanism to the LLC in the system 
as the distance between the LLC, and the main memory is far in units 
of CPU cycles. Our baseline system employs the UTS RR CPU-
scheduling algorithm and uses 2.5ms for the time-slice value.  
The UTS algorithm is representative of the mechanism in IBM 
PowerVM virtualization, in which a fixed scheduling period can be 
shared by up to 10 vCPUs through micropartitioning. The prominent 
parameters used in this work are modeled after those used in the most 
recent related paper [3]. These include the number of co-scheduled 
applications, the baseline CPU-scheduling algorithm and time-slice 
value, and the capacity of the LLC. Further, the LLC capacity of 2MB 
per core used in this work is representative of the LLC capacity in 
server class machines.

5. Results and Analysis
Hereafter, we use the word cache to refer to the LLC by default.  
We now attempt to answer the following questions by relying on 
experimental results: What is the performance improvement that 
can be obtained by adopting ETS? How accurately can we 
estimate the number of CS misses?

5.1 Advantage of Using the ETS CPU-Scheduling Algorithm
The results obtained by employing the ETS RR scheduling algorithm 
described in section 3.2 are shown in Figure 6 for all SPEC CPU2006 
benchmarks. The results correspond to a cache capacity of 2MB.  
In each case, a total of eight applications are co-scheduled onto a 
single core. We study the impact of CS events on the application 
indicated by the X-axis label, which is the application of interest. 
We apply the ETS algorithm to it and modify its time-slice value. 
The time-slice value for the remaining applications is 2.5ms, which 
is the baseline time-slice value of the UTS RR CPU-scheduling 
algorithm. The evaluation metric used is the IPC corresponding to 
the execution of 500 million instructions. The values corresponding 
to the ETS algorithm are normalized with respect to the values for 
the UTS algorithm.
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Figure 5. High-level overview of the ETS framework
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case in which there are a total of three co-scheduled applications. 
However, the reasoning also applies to co-schedules involving a 
different number of applications. In Figure 7, P3 is the application of 
interest. The time-slice allocation performed by the UTS algorithm 
is shown in the row labeled 2.5ms. The time-slice allocations made 
by the ETS algorithm for three different scenarios are shown in the 
other rows. Although the ETS algorithm allocates longer time slices, 
it allocates fewer such longer time slices. As the length of the 
allocated time slice increases, the number of allocations of the  
time slice decreases. Therefore, the ETS algorithm offers the same 
fairness guarantees as the UTS algorithm.

Latency or response time—time elapsed between two consecutive 
schedules of an application—is another important aspect of a CPU-
scheduling algorithm. In Figure 8, we provide quantitative information 
regarding the latency behavior of three algorithms: UTS algorithm 
with 10ms time slices, UTS algorithm with 2.5ms time slices, and 
ETS algorithm. For an application indicated by the X-axis label, the 
Y-axis value corresponds to the latency incurred by a co-scheduled 
application. The average latency for UTS-10, UTS-2.5, and ETS is 
30ms (horizontal solid line), 7.5ms (horizontal dotted line), and 
7.5ms (rectangles) respectively. Whereas the standard deviation in 
latency for UTS-10 and UTS-2.5 is 0, the value for each application 
in the case of ETS is shown in the form of error bars above the 
rectangles. The maximum value of the standard deviation is 3.7 
and is observed in case of HMMER. From the data presented in 
Figure 8, it can be inferred that the latency behavior of the ETS 
algorithm is very similar to that of UTS-2.5. In addition, the 
performance behavior of the ETS algorithm is nearly identical to that 
of UTS-10 (Figure 6(a)). The ETS algorithm adapts to the dynamic 
behavior of the applications to achieve the best of both worlds.

The CS performance penalty varies not only across applications 
but also over the duration of execution of an application. This is 
because applications go through phases of execution. We provide 

Figure 6(a) shows the improvement in IPC obtained by employing the 
ETS algorithm compared to that obtained using the UTS algorithm 
(2.5ms time slices). The applications are sorted in ascending order 
of the benefit derived from the ETS algorithm. Figure 6(b) shows 
the distribution of time slices allocated by the ETS algorithm. Some 
applications, such as libquantum and CalculiX, are minimally impacted 
by CS misses. The time-slice allocation distribution shows that the time 
slices allocated to these applications are predominantly of duration 
2.5ms. In contrast, applications such as HMMER, bzip2, and astar 
are severely impacted by CS misses. The distribution shows that 
the time slices allocated to these applications are predominantly  
of duration 5ms, 7.5ms, and 10ms. The ETS algorithm allocates 
longer time slices on the basis of their utility to applications. The 
maximum improvement in IPC is obtained in case of HMMER and  
is as much as 54%. The remaining applications span the entire 
spectrum of performance improvement.

The diversity of the results shown in Figure 6 reinforces our hypothesis 
that we should track the number of CS misses dynamically and allocate 
longer time slices to those applications that suffer from CS misses 
significantly. Out of a total of 29 applications studied, the performance 
improvement due to the ETS algorithm is 5% or more in the case  
of 15 applications and more than 10% in the case of 11 applications. 
Figure 6(a) also shows the IPC results corresponding to the case 
when a constant value of 10ms is used for the time slice. The results 
are once again normalized with respect to those for the UTS algorithm 
(2.5ms time slices). The IPC results obtained using the ETS algorithm 
are within 4% of the results obtained using a constant value of 10ms 
for the time slice. In summary, the results provide substantial evidence 
in favor of the ETS algorithm to address the negative performance 
impact of CS events. It should be noted that the ETS algorithm is 
implemented in software. Therefore, it can be customized and 
optimized for a target system. However, we expect that the 
implementation will be kept simple to contain the direct overhead 
associated with a CS event. In our implementation, the additional 
cost is approximately 10 instructions.

The cumulative CPU time allocated by the ETS algorithm to all 
applications (including the application of interest) is equal to that 
allocated by the UTS algorithm. We demonstrate this using an 
example in Figure 7. For clarity of discussion, we consider the  
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Figure 6. (a) IPC improvement by adopting the ETS RR CPU-scheduling algorithm (b) 
Distribution of allocated time slices

Figure 7. Example to illustrate the allocation of time slices by the ETS algorithm

Figure 8. Latency behavior of UTS-10 (horizontal solid line), UTS-2.5 (horizontal dotted 
line), and ETS algorithms. Error bars indicate the standard deviation in latency for the ETS 
algorithm. The latency behavior of the ETS algorithm is very similar to that of UTS-2.5.



 2 9

It is important to consider the mechanism that is employed to 
partition the cache among the sharers and how the mechanism 
affects CS miss count estimation. The results presented in this 
section are for the case when the ways are equally partitioned 
among the sharers and the LRU replacement policy is employed 
within each partition. We will now discuss the impact of more-
advanced partitioning mechanisms on the accuracy of CS cost 
estimation. Global LRU replacement policy allows for dynamic 
sharing based on demand. However, it was previously shown that 
demand for cache does not always translate to benefit from cache 
[4]. Several proposals were made to improve the benefit derived 
from a shared cache: utility-based cache partitioning (UCP) [4], 
thread-aware dynamic insertion policy (TADIP) [5], and software-
based shared-cache management techniques such as page coloring. 
The common goal of these works is to determine what is likely to 
be the optimum partition of the shared cache and enforce the 
applications to stay within the limit of the determined optimum 
partition. These methods allocate ways of sets or sets of cache 
among the applications. Such structured allocation lends itself well  
to the proposed CS cost-estimation mechanism, which works on 
the principle of uniform sampling. In summary, we anticipate that 
employing the proposed CS cost-estimation scheme in conjunction 
with advanced partitioning mechanisms will result in as accurate 
estimates as we obtained here.

We also evaluated the accuracy of the CS cost-estimation mechanism 
for a 2MB private cache and when four cores share an 8MB cache. 
The average value of the estimated error across all workloads is 2.7% 
and 2.5% respectively (excluding milc). The results corresponding 
to the private cache are shown in Figure 11. Estimating the number 
of CS misses to within a 10% value can provide very important 
information for a CPU-scheduling algorithm to factor the CS event 
cost. More concretely, we anticipate that the trend for the number 
of CS misses rather than the actual value will be used by the CPU 
scheduler. We discussed the performance improvement obtained 
using one manifestation of such a scheduler in section 5.1.

5.3 Addressing CS Cost-Estimation Inaccuracy
In section 5.2, we pointed out that the estimated value of CS misses 
is inaccurate (by 50%) for milc. We now propose a mechanism, which 
incurs minimal overhead, to determine when the CS miss count 
estimate is inaccurate. The ATD presented in section 4.1 is organized 
as two logical entities, with each one comprising half the original 
number of sample sets. We associate each logical entity with a 
separate CS-MISS-CNT counter. The hardware overhead of the 
enhanced estimator is this additional counter and a small amount  

experimental results in Figure 9 to substantiate our claim. Figure 9 
shows the time-slice transitions for all benchmarks over their total 
duration of execution. The label Same indicates the fraction of 
transitions from a time-slice value to the same time-slice value, 
and the label Different indicates the fraction of transitions to a 
different time-slice value. A Different transition happens when the 
number of CS misses changes considerably from a time slice to the 
next. Hence, a large value for the fraction of Different transitions is 
indicative of the change in the CS miss behavior over the duration 
of execution. The fraction of Different transitions is 10% or more 
for a total of 19 applications. A maximum value of 68% is recorded 
in case of xalancbmk. The results corroborate our hypothesis that 
the CS miss behavior indeed varies over the duration of execution 
of an application.

5.2 CS Cost-Estimation Accuracy
The ability to dynamically estimate the cost of a CS event is central 
to the operation of the ETS algorithm. We use the augmented CS 
cost-estimation mechanism described in section 3.1 to estimate  
the number of CS misses per sharer. The corresponding results are 
presented in Figure 10. Specifically, we provide the results when 
two cores share a 4MB cache. The sharers are identified uniquely 
through X-axis labels. The experiment used 256 SS, which correspond 
to 1/16 of the total number of sets. We evaluated various values for 
the number of SS and narrowed it down to 1/16 of the total number 
of sets. This choice achieves a good trade-off between area and 
accuracy. The estimation error is represented in percentage terms 
and indicates the separation between the value computed using 
the SS and the actual value. The average value of the estimated 
error across all sharers is 2.5% (excluding milc). The average error 
and the estimated error for most applications are both below 5%, 
indicating the usefulness of the proposed mechanism. We address 
the inaccuracy in estimation for milc in section 5.3.
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Figure 9. Variation in CS miss behavior over the duration of execution of applications. 
Same label indicates the fraction of transitions from a time-slice value to the same 
time-slice value, and Different indicates the fraction of transitions to a different time-
slice value. A large value for the fraction of Different transitions indicates that the  
CS miss behavior changes over the duration of execution.

Figure 11. Percentage error in estimation of the number of CS misses for a 2MB private LLC

Figure 10. Percentage error in estimation of the number of CS misses when two 
applications share a 4 MB LLC
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Prior to developing the sampling-based CS cost-estimation 
framework, we attempted to make use of the change in the IPC  
of the task before and after a CS event to estimate the cost of the 
CS event. The advantage of this approach is that it does not require 
any additional hardware. It makes use of the hardware-performance 
counters built into modern microprocessors. However, this mechanism 
suffers from the following drawbacks. First, in several instances, the 
IPC value before and after a point where a CS event will be scheduled 
are different. This inherent change in the IPC over the duration of 
execution serves to increase or decrease the actual cost of a CS 
event. Second, the duration for which the IPC value must be tracked 
varies across instances. In our experiments, after a CS event, we 
noticed that the CS misses are interspersed between regular misses, 
and the distribution of CS misses within the regular misses varies. This 
spread of CS misses adds to the problem of inherent difference in 
the IPC value. We developed the sampling-based framework after 
realizing the limitations of the IPC-based mechanism.

6. Impact of Cache Optimizations on CS Misses
In Section 1, we mentioned that the mechanisms that attempt to 
improve the cache hit rate by addressing the traditional cache 
misses exacerbate the problem associated with CS misses. Such 
optimizations attempt to retain more data that will be useful in  
the future, and CS events result in the loss of this data. Now, we 
evaluate the impact of improving the replacement algorithm and 
increasing the capacity of the cache on the number of CS misses. 
We also assess the accuracy of the CS cost-estimation hardware 
when it is applied to advanced replacement algorithms. Furthermore, 
we provide the performance-improvement results obtained by using 
the ETS mechanism in conjunction with these algorithms. In our 
experiments, the first-level and the middle-level caches use the 
LRU replacement policy, and our replacement-policy studies are 
limited to the LLC.

6.1 Replacement Algorithm
Thus far, we have assumed that the cache implemented the LRU 
replacement policy. It performs poorly in the following two scenarios: 
when the size of the working set is larger than the capacity of the 
cache, and when references to nontemporal data (scans) cause a 
frequently referenced working set to be discarded. Solutions were 
proposed to address one or more of these shortcomings of the 
LRU algorithm: dynamic insertion policy (DIP), rereference interval 
prediction (RRIP), and signature-based hit prediction (SHiP). DIP 
chooses between two policies—bimodal insertion policy (BIP) and 
LRU policy—dynamically depending on which policy incurs fewer 
misses. The selection is made through dynamic set sampling and 
set dueling [6]. RRIP policy works by predicting the rereference 
interval of a cache line. The work proposes two policies: static RRIP 
(SRRIP) and dynamic RRIP (DRRIP). DRRIP again uses set dueling 
to identify which of SRRIP and bimodal RRIP (BRRIP) performs  
the best [7]. Finally, SHiP works by correlating the rereference 
behavior of a cache line with its signature [8]. We use the program 
counter (PC) value to derive the signature.

Now, we present the results to show how the estimation hardware 
performs for replacement policies other than LRU. Specifically, we 
present the results for DRRIP and SHiP algorithms. The results 

of logic necessary to organize the logical entities. It should be 
noted that the physical organization of the ATD is still the same as  
it is for the original estimation mechanism described in section 3.1.

The estimation mechanism works as before, with the SS updating 
the respective counters for the number of CS misses. When the 
application is being switched out, the values of the two counters 
are used to determine if the estimated value is accurate. Specifically, 
we compute the ratio of the absolute difference of the two counter 
values and their sum. A large value of this ratio indicates that the 
estimate is inaccurate. Otherwise, the computed sum of the two 
counter values serves as the estimated value for the number of CS 
misses corresponding to the SS. This number is scaled to the total 
number of sets in the cache to get the final estimated value. The 
specified ratio is provided for all benchmarks in Figure 12. The 
value for milc is 0.30, while the corresponding value for all other 
benchmarks is at most 0.15. The computed ratio is a measure of 
divergence between the two counter values. When the estimate  
is inaccurate, the divergence is large. If this is the case, we ignore 
the estimate and keep the time-slice value intact.

5.4 Hardware Overhead
In this section, we quantify the additional hardware necessary to 
support the ETS mechanism. The storage component of the overhead 
consists of the following: (1) tags for the sample sets in the ATD and (2) 
counters for tracking the number of CS misses. This component is 
computed in Table 3. We assume a physical address space of 40 bits 
and use the same baseline LLC capacity of 2MB used previously. The 
LLC is organized as a 16-way associative cache for a total of 2,048 sets. 
Note that we used 1/16 of total sets for the number of SS throughout 
this paper. Additional logic is required in order to invalidate the ATD 
entries (to emulate a CS event), detect a CS miss (a 2-ip logic gate), 
and increment the CS- MISS-CNT counter. The overhead due to 
the extra logic is negligible, similar to the storage overhead.

Size of an MTD entry (address + metadata) 4B

Size of an ATD entry (valid-bit) 1 bit

Number of ATD entries (16 per set × 128 sets) 2048

Overhead of ATD 256B

Size of counter 
(log 2 {number − of − cache − lines − in − ATD})

1.5B

Overhead due to 2 counters 3B

Area of baseline LLC (128kB tags + 2MB data) 2176kB

% increase in LLC area (260B/2176kB) 0.012%

Table 3. Storage overhead to support the ETS mechanism
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Figure 12. Divergence ratio of CS-MISS-CNT counter values, used to determine the 
accuracy of CS cost estimate. A large value of the ratio denotes that the CS cost 
estimate is inaccurate.
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6.2 Cache Size
We now consider the impact of another important optimization—
increasing the capacity of the cache—on the number of CS misses. 
We present the results for all the benchmarks in Figure 15. We obtained 
the results for three different cache sizes: 1MB, 2MB, and 4MB. We 
provide the evaluation results for three replacement algorithms: 
LRU, DRRIP, and SHiP.

The number of CS misses for 2MB and 4MB cache sizes are 
normalized with respect to that for the capacity of 1MB. In general,  
for all benchmarks and replacement policies, the number of CS 
misses increases as the cache size increases. In several cases, the 
increase is by a factor of 5X or more from 1MB capacity to 4MB 
capacity. For cactusADM, with the DRRIP replacement policy, the 
number of CS misses increases by a factor of 101X from 1MB capacity 
to 4MB capacity. In summary, the results indicate that increasing 
the cache capacity has a significant impact on the number of CS 
misses experienced by the application. The performance penalty 
due to the increased number of CS misses will be commensurate 
with the magnitude of increase in the number. 

correspond to a private cache with a capacity of 2MB. In Figure 13(a), 
we show the percentage error in estimation of the number of CS 
misses. For each algorithm, we present the results generated using 
128 SS. Using 128 SS, which correspond to a 1/16 fraction of the 
total number of sets, we obtain an accurate estimate for the 
number of CS misses. The average percentage error in estimation  
is 2.8% and 2.4% for DRRIP and SHiP algorithms (excluding milc) 
respectively. The estimation error for milc is 29% and 18% 
respectively. These results demonstrate that the estimation 
hardware, because it is based on sampling, lends itself very  
well to other replacement algorithms.

Next, we consider the impact of the replacement algorithm on the 
number of CS misses suffered by an application. In Figure 13(b),  
we show how the number of CS misses varies with the replacement 
algorithm. The values for DRRIP and SHiP are normalized with respect 
to the values for LRU. For several benchmarks, the number of CS 
misses increases pronouncedly for DRRIP and SHiP when compared 
to LRU. The maximum increase in the number of CS misses (by a 
factor of 20X) is observed in case of sphinx3 for both DRRIP and SHiP. 
The geometric mean across all benchmarks is 1.6 and 2 for DRRIP 
and SHiP respectively. These results substantiate our hypothesis 
that adopting advanced replacement algorithms accentuates the 
problem associated with CS misses.

The IPC results obtained by employing the ETS RR scheduling 
algorithm are shown in Figures 14(a) and 14(b) for DRRIP and  
SHiP policies respectively. The experimental methodology used  
is similar to that employed in section 5.1. The values corresponding 
to the ETS algorithm are normalized with respect to the values for 
the UTS algorithm (2.5ms time slices). The applications are sorted 
in ascending order of the benefit derived from the ETS algorithm. 
Figure 14 also shows the IPC results corresponding to a 10ms time-
slice value normalized with respect to the results for the UTS 
algorithm. The IPC results obtained using the ETS algorithm are 
within 4% of the results obtained using a constant value of 10ms 
for the time slice. It can be inferred from these results that the ETS 
algorithm is equally applicable for advanced replacement policies. 
For both DRRIP and SHiP policies, the performance improvement 
due to the ETS algorithm is 10% or more in case of 11 applications.
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Figure 13. (a) Percentage error in estimation of the number of CS misses (b) Impact of 
advanced replacement algorithms on the number of CS misses

Figure 14. IPC improvement by adopting the ETS RR CPU-scheduling algorithm for  
(a) DRRIP and (b) SHiP replacement algorithms

Figure 15. Impact of increasing the cache size on the number of CS misses for (a) LRU, 
(b) DRRIP, and (c) SHiP replacement algorithms
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However, advanced replacement algorithms were proposed that 
perform better than the LRU algorithm. Also, analytical models are 
suitable for offline analysis, but the feasibility of their implementation 
in hardware while incurring a low area overhead is not considered. 
Our solution’s approach is implemented using very low hardware 
overhead to work in a dynamic environment for any cache 
configuration, thereby addressing the previously pointed-out 
limitations of the analytical models.

7.3 Employing Prefetching to Cope with CS Misses
The performance degradation due to CS misses can be addressed 
through two different means: by (1) increasing the time slice value (2) 
prefetching the cache state just before or when the new schedule 
starts. The former method is a preventive measure and the latter is 
a cure. Prefetching was suggested to mitigate the cost of additional 
cache misses incurred because of a CS event. The general idea is to 
record the application’s locality at the time when it gets swapped 
out. The locality is restored through prefetching the next time 
application gets CPU time. Previously proposed solutions that 
employ prefetching differ in how the locality is stored and restored. 
Cui et al. [22] employ global-history-list (GHL) prefetching. GHL 
maintains a complete list of cache lines, which is ordered by recency 
of use. Daly et al. [1] studied the impact of CS misses in highly 
partitioned virtualized systems. They proposed cache restoration 
as a solution to prefetch the working set and thereby warm the cache. 
GHL and cache restoration, although they differ in implementation 
details to some extent, perform similarly. GHL performs slightly 
better at the expense of more hardware and complexity. In the 
most recent related work [3], the authors proposed methods to 
reduce the bandwidth overhead of these prefetchers.

Brown et al. [23] proposed accelerating postmigration thread 
performance by predicting and prefetching the working set of the 
application. In the proposed solution, access behavior of a thread 
is captured and summarized into a compact form premigration. On 
the new core, the summary is used to prefetch appropriate data to 
create a warm state. Prefetching the data after a CS event serves 
to cure the cold-start problem. However, ETS works to minimize the 
number of cold starts for those applications for which it matters. 
The techniques presented in this paper can provide guidance as to 
when prefetching can be beneficial and when it is not likely to help. 
Zebchuk et al. [3] identified the inability of all cache-restoration 
prefetchers to dynamically adapt to the workload behavior as their 
main limitation. Our framework can be potentially used in conjunction 
with prefetching to address this key drawback. They can complement 
each other to achieve a synergistic effect.

7.4 Dynamic Set Sampling
Dynamic set sampling (DSS) was previously used to achieve 
multiple goals. The key intuition behind set sampling is that it is 
sufficient to monitor a relatively small fraction of the sets in the 
cache in order to understand the behavior of the entire cache. DSS 
was used in conjunction with set dueling to decide which of two or 
more policies performs the best at any given point. This technique 
was used to select the best-performing replacement policy: LIP 
versus BIP [6], MLP-aware versus traditional [24], and SRRIP versus 
BRRIP [7]. In a system with private LLCs, it was also used to determine 
if each cache should act as a spiller or a receiver [25]. In the context 

In summary, cache optimizations accentuate the problem associated 
with CS misses. Therefore, in the presence of such optimizations, 
estimating the CS miss cost accurately and incorporating the estimate 
into CPU-scheduling algorithms become even more important. 

7. Related Work
Studies related to context switching have received much attention 
from both the industry and the academia over a long period of time. 
We summarize, compare, and contrast the works that closely relate to 
the techniques proposed in this paper under four different categories.

7.1 Performance Impact of Context Switching
Many studies aimed at understanding the performance impact of 
CS events. Agarwal et al. [9] showed that multiprogramming activity 
significantly degrades cache performance, and that the impact 
grows with increase in cache size. Mogul et al. [10] estimated the 
performance reduction caused by a CS to be in the order of tens  
to hundreds of microseconds, depending on the cache parameters. 
Suh et al. [11] considered the performance impact of context switching 
on page faults. They proposed to mitigate the problem using job 
speculative prefetching. Chiou et al. [12] proposed that memory 
scheduling, potentially at all levels of the memory hierarchy, should 
drive CPU scheduling rather than the other way around as it is 
done in most systems.

Koka et al. [13] characterized CS misses and quantified their impact 
in the case of transactional workloads. They investigated the potential 
for intelligent process scheduling that minimizes cache misses 
across CS boundaries. Li et al. [14] concluded that the indirect CS 
overhead due to cache perturbation is more significant than the 
direct overhead. Tsafrir [15] and David et al. [16] calculated the 
indirect overhead due to a CS event for Intel and ARM platforms 
respectively. In summary, most of the works concluded that the 
indirect overhead, due to cache perturbation, associated with CS 
events is significant. It is this overhead that we attempt to address 
through our proposal. 

7.2 Analytical Models
Several analytical models were proposed to explain the relationship 
between an application’s temporal reuse behavior and its vulnerability 
to CS misses. Such models need to factor in all essential variables 
to have a sufficient resolution. Agarwal et al. [17] and Suh et al. [18] 
[19] proposed analytical models to estimate the overall cache miss 
rate, including fully associative cache, in order to obtain a continuous 
miss-rate curve, which is required as profiling information. This 
assumption does not hold true in case of the LLC. The model by 
Hwu et al. [20] was aimed at predicting the worst-case number of 
CS misses. Liu et al. [21] classified CS misses into two categories: 
replaced misses and reordered misses. Further, they developed  
an analytical model to reveal the relationship among cache design 
parameters, an application’s temporal reuse pattern, and the 
number of CS misses the application suffers from. They applied  
the devised model to study the impact of prefetching and cache 
size on the number of CS misses.

Analytical models make certain assumptions to render the task of 
making the model tractable. For example, the model by Liu et al. 
[21] is designed under the assumption of LRU replacement policy. 
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mechanism is only 0.01% for a 2MB cache. We used the estimated  
cost of a CS event, in terms of the number of CS misses, to modify 
the time slice in an elastic manner. In the case of cache-restoration 
prefetchers, the estimated number of CS misses can provide guidance 
as to when prefetching can be beneficial and when it is not likely to 
help. The inability of all cache-restoration prefetchers to dynamically 
adapt to the workload behavior has been identified as their main 
limitation. Our CS cost-estimation framework can be potentially used 
in conjunction with them to address the specified key drawback.
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