
 2 3
REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Abstract
Virtualization enables a platform to have an increased number
of logical processors by multiplexing the underlying resources
across different virtual machines. The hardware resources are
time-shared not only among different virtual machines (VMs), but
also among different workloads of the same VM. An important source
of performance degradation in such a scenario are the cache-warmup
penalties that a workload experiences when it’s scheduled, because
the working set belonging to the workload gets displaced by other
concurrently running workloads. We show that a VM that time-switches
among four workloads can cause some of the workloads a slowdown
of as much as 54%. However, such performance degradation depends
on the workload behavior, with some workloads experiencing
negligible degradation and some severe degradation.

We propose Elastic Time Slicing (ETS) to reduce the context-switch
overhead for the most-affected workloads. We demonstrate that
by taking the workload-specific context-switch overhead into
consideration, the CPU scheduler can make better decisions to
minimize the context-switch penalty for the most-affected workloads,
thereby resulting in substantial performance improvements. ETS
enhances performance without compromising on response time,
thereby achieving dual benefits. To facilitate ETS, we develop a
low-overhead hardware-based mechanism that dynamically
estimates the sensitivity of a given workload to context switching.
We evaluate the accuracy of the mechanism under various cache-
management policies and show that it is very reliable. Context-
switch–related warmup penalties increase as optimizations are
applied to address traditional cache misses. For the first time, we
assess the impact of advanced replacement policies and establish
that it is significant.

1. Introduction
Virtualization enables sharing of hardware resources by multiple
guest operating system (OS) instances. The resources are shared
not only among different VMs, but also among different workloads
of the same VM. To facilitate high utilization through consolidation,
the system must support a large number of workloads. Some systems
adopt coarse-grained division at the level of single cores, and others
employ fine-grained division through time-sharing a core among
workloads [1]. The latter phenomenon is referred to as multitasked
virtualization. Factors such as cost, security, and system-management

convenience lead to more workloads per system. The transition
from dedicated workstations to virtualized desktop infrastructure
environments is another trend in this direction.

In a virtualized environment with multiple workloads per VM, the
time slice allocated to a VM is split equally among the constituent
workloads [1]. As a result, each workload obtains a share of the time
slice allotted to the VM, which is inversely proportional to the number
of workloads. Such an aggressively multitasked environment serves as
the basis for our work. Multitasked virtualization affects performance
in two ways: (1) direct overhead incurred to switch among the
workloads and (2) indirect overhead incurred due to the displacement
of the system state. The second factor contributes significantly to the
performance degradation and can be further viewed as composed
of multiple components: lost register, translation look-aside buffer,
branch predictor, and cache states. Among these components, the
major overhead is due to the displaced state in the last-level cache
(LLC) [1] and is the focus of this work. We designate the additional
cache misses suffered due to a context-switch (CS) event as CS misses.
The performance penalty associated with CS misses is severe in the
case of multitasked virtualization, due to an additional degree of
multitasking above and beyond the OS-level multitasking.

Modern computer systems feature large-LLC and long-latency main
memory. When run on such systems, memory-intensive tasks cache
a large volume of data in the LLC. We use the terms workload, task,
and application as synonyms. After running a task of interest for the
duration of its time-slice value, when the CPU scheduler context-
switches to a different task or a set of different tasks, the cache
lines belonging to the former are replaced by those of the latter.
Depending on the memory-access behavior of the intervening
tasks, when the task of interest gets a schedule on the processor
again, it is likely to encounter a partially or completely cold cache.
Depending on the memory-reuse behavior of the task of interest,
its performance could be affected across the spectrum ranging
from no or slight degradation to significant degradation. Some
tasks experience only slight degradation because sometimes
caches hold data irrelevant to future accesses [2].

We illustrate the variation in CS penalty across applications by
using an example. Figure 1 shows the impact of CS events on the
performance of two different applications. On a CS event, the
cache warmup penalty is minimal for application (a) and significant

Reducing Cache-Associated Context-Switch
Performance Penalty Using Elastic Time Slicing
Nagakishore Jammula
Georgia Institute of Technology
nagakishore@gatech.edu

Moinuddin Qureshi
Georgia Institute of Technology
moin@ece.gatech.edu

Ada Gavrilovska
Georgia Institute of Technology
ada@cc.gatech.edu

Jongman Kim
Georgia Institute of Technology
jkim@ece.gatech.edu

2 4

for application (b). Whereas (a) is not sensitive to CS events, (b) is
highly sensitive. Even though the complete cache state is lost in
case of both applications (a) and (b) on a CS event, (a) suffers only
minor performance degradation because its data reuse is low.
(b) suffers significant performance degradation because its data
reuse is high. In the following section, we use actual data to show
that different tasks suffer from CS misses differently. For a task
that suffers from CS misses significantly, a small time-slice value
causes the task to experience CS events and CS misses more times
than a large time-slice value. This phenomenon translates to an
increase in the execution time of the task and a corresponding
increase in the energy consumed across the entire system. The
problem can be addressed by allocating fewer but longer time
slices to the most-affected tasks (as illustrated in Figure 1(c)).

In this paper, we propose ETS to reduce the CS miss penalty.
Whereas a uniform time-slicing (UTS) CPU-scheduling algorithm
allocates time slices of equal duration to all tasks irrespective of
their specific CS miss behavior, an ETS CPU-scheduling algorithm
analyzes the CS miss behavior of the tasks and allocates fewer but
longer time slices to those tasks that suffer significant performance
degradation due to CS events. Performance penalty due to CS events
can be naïvely addressed by allocating 10ms time slices to all tasks.
10ms is the default time-slice value allocated by the Linux OS. However,
this solution suffers from high latency or response time between

consecutive schedules, as depicted in Figure 2. In contrast, a UTS
algorithm with 2.5ms time slices achieves low latency between
consecutive schedules, but it suffers from low performance. 2.5ms
is obtained by dividing 10ms equally among four tasks of a VM.
Our ETS algorithm combines the best of both worlds and offers
high performance (within 4% of UTS-10) as well as low latency
(similar to UTS-2.5).

Enabling ETS requires dynamically estimating the extent to which
a task suffers from CS misses. We develop a low-cost hardware-
based Monte Carlo mechanism to estimate the cost of a CS event
in terms of the number of CS misses suffered. The CS cost estimator
works reliably under various cache-management policies because
it is based on sampling of actual CS miss information. It facilitates
incorporating the information about CS miss behavior into the design
of a CPU-scheduling algorithm and exploiting the potential of such
an enhanced CPU scheduler.

Most solutions that attempt to improve the cache hit rate by
addressing the traditional cache misses (such as those due to
capacity, conflict, coherence, and replacement) accentuate the
problem of CS misses. These include: increasing the capacity of
cache, employing compression in cache, prefetching lines into
cache, improving the replacement algorithm, and so on. The
number of CS misses tends to increase with increase in cache
capacity (section 6.2) and improvement in replacement algorithm
(section 6.1), thus worsening the problem. This paper shows that
as systems optimize cache organization, addressing the problem
associated with CS misses becomes more important, and a scheme
like ETS becomes even more relevant.

2. Motivation
The locality properties of applications vary, and hence losing
the cache state due to context switch can lead to variation in
performance degradation for different applications. To demonstrate
this, we conducted an experiment by reducing the allocated time-
slice value. Figure 3 shows the variation in slowdown (measured in
terms of cycles per instruction [CPI]) for SPEC CPU2006 benchmarks
as the assigned time-slice value is reduced from 10ms. We flush the
caches after each time slice to emulate a CS event. The rationale
behind flushing the caches on a CS event will be described shortly.
The parameters of the simulation infrastructure used to generate
the results provided in Figure 3, and the basis for the choice of the
parameters, are provided in section 4. Here, we capture the important
aspects in order to enable comprehension of Figure 3. The results
correspond to a LLC capacity of 2MB. We consider a processor
running at a frequency of 4GHz. On such a processor, 10 million
elapsed cycles correspond to an execution time of 2.5ms. The
Y-axis represents the CPI corresponding to the execution of 500
million instructions. The labels 2.5ms and 5ms correspond to the
cases when the VM comprises four and two workloads respectively,
and a time-slice value of 10ms allocated to the VM is divided equally
among the workloads. The CPI values for labels 2.5ms and 5ms
are normalized with respect to the values corresponding to 10ms.
A large value on the Y-axis corresponds to a higher CPI and,
therefore, the smaller the Y-axis value the better.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 1. (a) When CS penalties are small, using short time slices does not cause any
noticeable overhead. (b) For some workloads, short time slices can cause significant
slowdown. (c) Only for such workloads is using longer and infrequent time slices desirable.

Figure 2. ETS provides the performance benefits of UTS with 10ms time slices as well
as the latency benefits of UTS with 2.5ms time slices.

 2 5
REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

We show the behavior for all 29 SPEC CPU2006 benchmarks in
Figure 3 to make our case. The benchmarks are sorted in ascending
order of the performance degradation incurred as the allocated
time-slice value is reduced. Throughout this paper, we identify
the benchmarks in figures using the first four letters of their
names. For applications that appear on the left of the figure,
the CPI varies very little as the duration of the time-slice value is
reduced from 10ms to 2.5ms. However, the CPI varies significantly
in the case of applications that appear on the right. For the remaining
applications, the variation in CPI as the time-slice value is decreased
is distributed across the spectrum. The maximum degradation for
a 2.5ms time slice is observed in case of HMMER and is 54%. An
analysis of the results reveals that different applications indeed
suffer from CS events differently; some suffer mildly while others
suffer severely. Further, the CS performance penalty varies over the
duration of execution of an application (section 5.1). The variation
in performance degradation can be addressed by adopting ETS.
The key insight behind ETS is to allocate fewer but longer time
slices to address the performance penalty incurred by the most-
affected workloads. To facilitate ETS, a dynamic mechanism is
essential for estimating the extent to which an application suffers
from CS events. We now describe an assumption and justify the
reason for making it before presenting the dynamic mechanism.

We assume that the data cached by an application in the LLC during
the duration of its time slice is completely evicted by the data brought
in by the intervening applications, before it is scheduled again. This
assumption holds because of the aggressive multitasking employed
by the virtualized systems described in section 1. We co-scheduled
eight applications in a round-robin (RR) fashion, each for a time-slice
duration of 2.5ms. This co-schedule is analogous to a scenario in
which there are two VMs, each containing four workloads. The
baseline time-slice value of 2.5ms is obtained by dividing 10ms
equally among the workloads comprising a VM. The values we
considered for the number of VMs and the number of workloads
in this work are conservative. The actual numbers are even larger
[1] [3], and our assumption is still valid under such conditions. We
evaluated 30 different co-schedules, each made up of eight distinct
applications, and observed the number of residual lines from one
schedule of the application to its next schedule. Residual lines are
those lines that remain in the cache from one schedule to the next.
Over the total duration of execution, the number of residual lines
for all applications is zero. Similar behavior was also observed in
previous works [1] [3]. Even though the base time-slice value is

small, when the execution of interleaved applications is considered,
the total time is sufficient for an application’s data in the LLC to be
evicted completely. This phenomenon has two implications. First,
invalidating the cache entries faithfully emulates a CS event. Second,
there is no negative impact due to extending the time-slice value
of an application on those applications whose time-slice value
remains unchanged.

3. Framework for Estimating and Addressing
the CS Performance Penalty
The motivational results presented in section 2 suggest that a dynamic
mechanism is essential for estimating the penalty incurred due to a
CS event. Such a mechanism can be used to characterize the impact
of a CS event on an application. Now we describe the mechanism
designed to estimate the cost of a CS event in terms of the number
of CS misses incurred. The mechanism is capable of computing the
cost of a CS event effectively while incurring a minimal overhead.
Further, we present an augmentation to the baseline UTS RR CPU-
scheduling algorithm in order to derive an ETS RR CPU-scheduling
algorithm. The latter is capable of leveraging the calculated cost
of CS events to mitigate the performance degradation.

3.1 Cost Estimation of a CS Event
The number of CS misses suffered by an application can be
estimated in a simple but inefficient manner by making a copy of
the tag directory (of the cache) on a CS event. When the application
obtains a schedule again, the accesses that miss in the main tag
directory but hit in the copy tag directory are tracked. The number
of such accesses corresponds to the number of CS misses suffered.
This simple scheme suffers from the following drawbacks. If there
are multiple co-scheduled applications, we need a corresponding
number of copy tag directories, which incur a significant area
overhead. Multiple copy tag directories can be avoided by storing
all but the one required (at any given time) in the memory. This
approach requires maintaining space in the memory and logic to
store and restore the copy tag directory to and from the memory
respectively. Further, additional memory bandwidth is required to
perform the store and restore operations. Now we propose a solution
that overcomes these disadvantages. The solution is based on the
following key ideas. CS miss count can be estimated by emulating
a CS event. This requires only one copy tag directory (Figure 4a). The
hardware overhead due to the copy tag directory can be reduced

Figure 3. Variation in slowdown (measured in terms of CPI) as the time-slice value is
reduced for SPEC CPU2006 benchmarks. The impact of CS events is significant on
some workloads and imperceptible on others.

Figure 4. (a) The MTD (wide) and the full ATD (narrow) (b) The MTD (wide) and the
ATD (narrow) with sample sets (c) An entry in the MTD (wide) and the ATD (narrow)
(d) Status of accesses in the MTD and the ATD after a CS event.

2 6

by maintaining copy tags only for a fraction of the sets in the cache
(Figure 4b). Further, the copy tag directory entry needs to contain
only one bit of information (a valid bit), as opposed to a main tag
directory entry that contains a valid bit, address bits, and other
metadata (Figure 4c).

The working of our cost-estimation framework is modeled after
that of a Monte Carlo (MC) method. MC methods rely on random
sampling to determine an approximate answer to a question. In
general, the answer determined using a MC method becomes
more accurate as the number of samples considered increases.
The proposed mechanism consists of an auxiliary tag directory
(ATD) in addition to the regular main tag directory (MTD) in the
cache. The ATD contains tags corresponding to a certain number
of sets in the MTD. These sets in the MTD are referred to as sample
sets (SS). We reason about the exact number of SS required in
section 5. An entry in the ATD contains only one bit of information
and can be either valid or invalid. It should be noted that a hit in
the ATD is analogous to the line being valid and a miss to the line
being invalid. At the start of execution, the state of SS in the MTD
and the ATD is consistent, which means that lines in the MTD and
the ATD are either both valid or both invalid.

To estimate the number of CS misses for an application, the entries
in the ATD are invalidated. This process emulates a CS event. After
the point of invalidation, corresponding to subsequent cache accesses,
one of the following scenarios can arise (Figure 4d): access hits in
both the MTD and the ATD, access misses in both the MTD and the
ATD, or access hits in the MTD but misses in the ATD. The first two
events are not of interest to us. The third event corresponds to a
CS miss. A miss in the ATD and a hit in the MTD happen because
the ATD experienced a cache-flush event, which is analogous to
a CS event. The corresponding entry in the ATD is made valid on
recording the CS miss. So, further accesses to the same cache line
do not generate CS misses. The ATD entry corresponding to the
second event is made valid as well. We use a counter (CS-MISS-
CNT) to keep track of the CS misses. The counter value is read at
the time when the application is being switched out. It indicates
the number of CS misses suffered by SS. To estimate the total
number of CS misses experienced by the application, the counter
value is multiplied with the ratio of the total number of sets to the
number of SS. This ratio is chosen to be a power of 2 so that the
multiplication operation degenerates to a simple left-shift operation.
After the invalidation point, an event corresponding to a miss in
the MTD and a hit in the ATD does not happen by construction
(Figure 4d). The set of hits in the ATD is always a proper subset
of the set of hits in the MTD. We depict the steps for estimating
the CS miss count in Algorithm 1, using pseudocode.

The mechanism proposed above aids in estimating the number of
CS misses for a private cache. The trend in modern computer systems
is to employ simultaneous multiple threading (SMT) and/or multiple
cores to enhance performance while keeping power consumption
in check. We refer to the hardware thread instances in the case of
SMT and the cores in a multicore processor commonly as sharers.
When the cache is shared by two or more sharers, the CS cost-
estimation mechanism needs to be augmented as follows to
support the cost estimation for each sharer. The modification

required is to replicate CS-MISS-CNT counter per sharer. Because
lines belonging to each sharer are uniquely identified in the tag entry
of the cache, the identifier can be used to match and update the
corresponding counter. Note that one copy of the ATD is sufficient
irrespective of the number of sharers.

3.2 Design of an ETS RR CPU-Scheduling Algorithm
Previously, we pointed out that fewer but longer time slices must be
used for those applications that are severely impacted by CS events.
By doing so, we can alleviate the negative impact of CS events on
the performance of such applications. In this section, we describe
the design of a CPU-scheduling algorithm that achieves this goal.
Specifically, we augment the baseline UTS RR CPU-scheduling
algorithm to derive an ETS RR CPU-scheduling algorithm. Recall
that we described the distinction between the two in section 1. To
keep the discussion precise, we choose the following values for
parameters (same as the values used throughout this paper).
The baseline UTS algorithm allocates a time-slice value of 2.5ms
for all applications in a RR fashion. We consider a system with a
LLC capacity of 2MB. The cache consists of a total of 32,768 lines,
each of size 64 bytes. The ETS algorithm categorizes these lines
into four groups, as shown in the Group column of Table 1. The
groups are based on the number of CS misses. For an application
belonging to a particular group, the algorithm extends the time
slice to the value indicated in the Slice column. The size of the
group is doubled from one group to the next, and the time-slice
value is increased by 2.5ms. In this manifestation, we capped the
maximum time-slice value at 10ms. In an actual system, we expect
that this value will be set after taking the response-time constraints
and other factors into consideration.

GROUP SLICE GROUP SLICE

(1) ≤1,500 2.5 ms (2) 1,501 - 4,500 5.0 ms

(4) >10,501 10 ms (3) 4,501 - 10,500 7.5 ms

Table 1. An ETS round-robin CPU-scheduling algorithm implementation. CS miss
count is used as index in order to determine the time slice value for the next schedule.

We measure the number of CS misses experienced by the application
every time it obtains a schedule on the processor. The number of
misses estimated using Algorithm 1 is used as index into Table I. The
corresponding value of Slice is assigned as the time-slice value for
the next schedule of the application. It must be noted that the
discretization presented in Table 1 is realized in software and therefore
can be customized to a target system. We developed the presented

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

initialize() {
 invalidate entries in ATD; CS-MISS-CNT = 0; }

count_cs_misses() {
 if ((MTD.lookup == hit) &&

(ATD.lookup == miss)) CS-MISS-CNT++; }

estimate_cs_penalty() {
 CS-MISS-CNT X (number-of-sets-in-cache/

number-of-sample-sets); }

Algorithm 1. CS cost computation in terms of the number of CS misses

 2 7

discretization by heuristically running the benchmarks and analyzing
the results. A high-level overview of the working of the ETS framework
is provided as a flow chart in Figure 5.

It is not our objective to propose an alternative CPU-scheduling
algorithm. There is a large body of work that investigated such
algorithms. However, we argue that these algorithms must be
supplemented to make them aware of the cost of the CS events.
The design of the scheduling algorithm could incorporate CS miss
information together with other currently used factors such as
priority and interactivity. Here, we described how a UTS RR
CPU-scheduling algorithm can be augmented to account for
the CS penalty incurred.

4. Experimental Methodology
We use an in-house trace-driven simulator to conduct the
experiments. The processor is modeled as an in-order core, and
the simulator is capable of handling multiple cores. The memory
hierarchy consists of three levels of caches: separate instruction
and data caches at the first level, and unified caches at the middle
and the last levels. A uniform value of 64 bytes is used for line size
across the entire hierarchy. We use a baseline value of 2MB for the
LLC capacity in our experiments. Our simulator can model the LLC
as private to each core or as shared among multiple cores. In either
case, multiple applications can be co-scheduled on each core. All
cache levels implement the LRU replacement policy. The
parameters of the simulated machine are shown in Table 2.

Processor 4GHz, Single Issue, In-Order

L1 I-cache 32KB, 2-way

L1 D-cache 32KB, 2-way

L2 cache 256KB, 4-way

LLC 2MB, 16-way, 24 cycles

Main memory 400 cycles

Table 2. Machine configuration

In the event of a context switch, the employed framework eliminates
effects other than the loss of saved state in the LLC. We use all
benchmarks (29 in number) from the SPEC CPU2006 suite to
obtain a comprehensive set of results. Each benchmark is comprised
of a representative set of 500 million instructions. For our experiments,
we combined disparate benchmarks to generate 29 diverse workload
mixes (co-schedules). When an LLC capacity other than 2MB is used,
we keep the associativity constant and increase the number of sets.
We apply the CS cost-estimation mechanism to the LLC in the system
as the distance between the LLC, and the main memory is far in units
of CPU cycles. Our baseline system employs the UTS RR CPU-
scheduling algorithm and uses 2.5ms for the time-slice value.
The UTS algorithm is representative of the mechanism in IBM
PowerVM virtualization, in which a fixed scheduling period can be
shared by up to 10 vCPUs through micropartitioning. The prominent
parameters used in this work are modeled after those used in the most
recent related paper [3]. These include the number of co-scheduled
applications, the baseline CPU-scheduling algorithm and time-slice
value, and the capacity of the LLC. Further, the LLC capacity of 2MB
per core used in this work is representative of the LLC capacity in
server class machines.

5. Results and Analysis
Hereafter, we use the word cache to refer to the LLC by default.
We now attempt to answer the following questions by relying on
experimental results: What is the performance improvement that
can be obtained by adopting ETS? How accurately can we
estimate the number of CS misses?

5.1 Advantage of Using the ETS CPU-Scheduling Algorithm
The results obtained by employing the ETS RR scheduling algorithm
described in section 3.2 are shown in Figure 6 for all SPEC CPU2006
benchmarks. The results correspond to a cache capacity of 2MB.
In each case, a total of eight applications are co-scheduled onto a
single core. We study the impact of CS events on the application
indicated by the X-axis label, which is the application of interest.
We apply the ETS algorithm to it and modify its time-slice value.
The time-slice value for the remaining applications is 2.5ms, which
is the baseline time-slice value of the UTS RR CPU-scheduling
algorithm. The evaluation metric used is the IPC corresponding to
the execution of 500 million instructions. The values corresponding
to the ETS algorithm are normalized with respect to the values for
the UTS algorithm.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 5. High-level overview of the ETS framework

2 8

case in which there are a total of three co-scheduled applications.
However, the reasoning also applies to co-schedules involving a
different number of applications. In Figure 7, P3 is the application of
interest. The time-slice allocation performed by the UTS algorithm
is shown in the row labeled 2.5ms. The time-slice allocations made
by the ETS algorithm for three different scenarios are shown in the
other rows. Although the ETS algorithm allocates longer time slices,
it allocates fewer such longer time slices. As the length of the
allocated time slice increases, the number of allocations of the
time slice decreases. Therefore, the ETS algorithm offers the same
fairness guarantees as the UTS algorithm.

Latency or response time—time elapsed between two consecutive
schedules of an application—is another important aspect of a CPU-
scheduling algorithm. In Figure 8, we provide quantitative information
regarding the latency behavior of three algorithms: UTS algorithm
with 10ms time slices, UTS algorithm with 2.5ms time slices, and
ETS algorithm. For an application indicated by the X-axis label, the
Y-axis value corresponds to the latency incurred by a co-scheduled
application. The average latency for UTS-10, UTS-2.5, and ETS is
30ms (horizontal solid line), 7.5ms (horizontal dotted line), and
7.5ms (rectangles) respectively. Whereas the standard deviation in
latency for UTS-10 and UTS-2.5 is 0, the value for each application
in the case of ETS is shown in the form of error bars above the
rectangles. The maximum value of the standard deviation is 3.7
and is observed in case of HMMER. From the data presented in
Figure 8, it can be inferred that the latency behavior of the ETS
algorithm is very similar to that of UTS-2.5. In addition, the
performance behavior of the ETS algorithm is nearly identical to that
of UTS-10 (Figure 6(a)). The ETS algorithm adapts to the dynamic
behavior of the applications to achieve the best of both worlds.

The CS performance penalty varies not only across applications
but also over the duration of execution of an application. This is
because applications go through phases of execution. We provide

Figure 6(a) shows the improvement in IPC obtained by employing the
ETS algorithm compared to that obtained using the UTS algorithm
(2.5ms time slices). The applications are sorted in ascending order
of the benefit derived from the ETS algorithm. Figure 6(b) shows
the distribution of time slices allocated by the ETS algorithm. Some
applications, such as libquantum and CalculiX, are minimally impacted
by CS misses. The time-slice allocation distribution shows that the time
slices allocated to these applications are predominantly of duration
2.5ms. In contrast, applications such as HMMER, bzip2, and astar
are severely impacted by CS misses. The distribution shows that
the time slices allocated to these applications are predominantly
of duration 5ms, 7.5ms, and 10ms. The ETS algorithm allocates
longer time slices on the basis of their utility to applications. The
maximum improvement in IPC is obtained in case of HMMER and
is as much as 54%. The remaining applications span the entire
spectrum of performance improvement.

The diversity of the results shown in Figure 6 reinforces our hypothesis
that we should track the number of CS misses dynamically and allocate
longer time slices to those applications that suffer from CS misses
significantly. Out of a total of 29 applications studied, the performance
improvement due to the ETS algorithm is 5% or more in the case
of 15 applications and more than 10% in the case of 11 applications.
Figure 6(a) also shows the IPC results corresponding to the case
when a constant value of 10ms is used for the time slice. The results
are once again normalized with respect to those for the UTS algorithm
(2.5ms time slices). The IPC results obtained using the ETS algorithm
are within 4% of the results obtained using a constant value of 10ms
for the time slice. In summary, the results provide substantial evidence
in favor of the ETS algorithm to address the negative performance
impact of CS events. It should be noted that the ETS algorithm is
implemented in software. Therefore, it can be customized and
optimized for a target system. However, we expect that the
implementation will be kept simple to contain the direct overhead
associated with a CS event. In our implementation, the additional
cost is approximately 10 instructions.

The cumulative CPU time allocated by the ETS algorithm to all
applications (including the application of interest) is equal to that
allocated by the UTS algorithm. We demonstrate this using an
example in Figure 7. For clarity of discussion, we consider the

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 6. (a) IPC improvement by adopting the ETS RR CPU-scheduling algorithm (b)
Distribution of allocated time slices

Figure 7. Example to illustrate the allocation of time slices by the ETS algorithm

Figure 8. Latency behavior of UTS-10 (horizontal solid line), UTS-2.5 (horizontal dotted
line), and ETS algorithms. Error bars indicate the standard deviation in latency for the ETS
algorithm. The latency behavior of the ETS algorithm is very similar to that of UTS-2.5.

 2 9

It is important to consider the mechanism that is employed to
partition the cache among the sharers and how the mechanism
affects CS miss count estimation. The results presented in this
section are for the case when the ways are equally partitioned
among the sharers and the LRU replacement policy is employed
within each partition. We will now discuss the impact of more-
advanced partitioning mechanisms on the accuracy of CS cost
estimation. Global LRU replacement policy allows for dynamic
sharing based on demand. However, it was previously shown that
demand for cache does not always translate to benefit from cache
[4]. Several proposals were made to improve the benefit derived
from a shared cache: utility-based cache partitioning (UCP) [4],
thread-aware dynamic insertion policy (TADIP) [5], and software-
based shared-cache management techniques such as page coloring.
The common goal of these works is to determine what is likely to
be the optimum partition of the shared cache and enforce the
applications to stay within the limit of the determined optimum
partition. These methods allocate ways of sets or sets of cache
among the applications. Such structured allocation lends itself well
to the proposed CS cost-estimation mechanism, which works on
the principle of uniform sampling. In summary, we anticipate that
employing the proposed CS cost-estimation scheme in conjunction
with advanced partitioning mechanisms will result in as accurate
estimates as we obtained here.

We also evaluated the accuracy of the CS cost-estimation mechanism
for a 2MB private cache and when four cores share an 8MB cache.
The average value of the estimated error across all workloads is 2.7%
and 2.5% respectively (excluding milc). The results corresponding
to the private cache are shown in Figure 11. Estimating the number
of CS misses to within a 10% value can provide very important
information for a CPU-scheduling algorithm to factor the CS event
cost. More concretely, we anticipate that the trend for the number
of CS misses rather than the actual value will be used by the CPU
scheduler. We discussed the performance improvement obtained
using one manifestation of such a scheduler in section 5.1.

5.3 Addressing CS Cost-Estimation Inaccuracy
In section 5.2, we pointed out that the estimated value of CS misses
is inaccurate (by 50%) for milc. We now propose a mechanism, which
incurs minimal overhead, to determine when the CS miss count
estimate is inaccurate. The ATD presented in section 4.1 is organized
as two logical entities, with each one comprising half the original
number of sample sets. We associate each logical entity with a
separate CS-MISS-CNT counter. The hardware overhead of the
enhanced estimator is this additional counter and a small amount

experimental results in Figure 9 to substantiate our claim. Figure 9
shows the time-slice transitions for all benchmarks over their total
duration of execution. The label Same indicates the fraction of
transitions from a time-slice value to the same time-slice value,
and the label Different indicates the fraction of transitions to a
different time-slice value. A Different transition happens when the
number of CS misses changes considerably from a time slice to the
next. Hence, a large value for the fraction of Different transitions is
indicative of the change in the CS miss behavior over the duration
of execution. The fraction of Different transitions is 10% or more
for a total of 19 applications. A maximum value of 68% is recorded
in case of xalancbmk. The results corroborate our hypothesis that
the CS miss behavior indeed varies over the duration of execution
of an application.

5.2 CS Cost-Estimation Accuracy
The ability to dynamically estimate the cost of a CS event is central
to the operation of the ETS algorithm. We use the augmented CS
cost-estimation mechanism described in section 3.1 to estimate
the number of CS misses per sharer. The corresponding results are
presented in Figure 10. Specifically, we provide the results when
two cores share a 4MB cache. The sharers are identified uniquely
through X-axis labels. The experiment used 256 SS, which correspond
to 1/16 of the total number of sets. We evaluated various values for
the number of SS and narrowed it down to 1/16 of the total number
of sets. This choice achieves a good trade-off between area and
accuracy. The estimation error is represented in percentage terms
and indicates the separation between the value computed using
the SS and the actual value. The average value of the estimated
error across all sharers is 2.5% (excluding milc). The average error
and the estimated error for most applications are both below 5%,
indicating the usefulness of the proposed mechanism. We address
the inaccuracy in estimation for milc in section 5.3.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 9. Variation in CS miss behavior over the duration of execution of applications.
Same label indicates the fraction of transitions from a time-slice value to the same
time-slice value, and Different indicates the fraction of transitions to a different time-
slice value. A large value for the fraction of Different transitions indicates that the
CS miss behavior changes over the duration of execution.

Figure 11. Percentage error in estimation of the number of CS misses for a 2MB private LLC

Figure 10. Percentage error in estimation of the number of CS misses when two
applications share a 4 MB LLC

3 0

Prior to developing the sampling-based CS cost-estimation
framework, we attempted to make use of the change in the IPC
of the task before and after a CS event to estimate the cost of the
CS event. The advantage of this approach is that it does not require
any additional hardware. It makes use of the hardware-performance
counters built into modern microprocessors. However, this mechanism
suffers from the following drawbacks. First, in several instances, the
IPC value before and after a point where a CS event will be scheduled
are different. This inherent change in the IPC over the duration of
execution serves to increase or decrease the actual cost of a CS
event. Second, the duration for which the IPC value must be tracked
varies across instances. In our experiments, after a CS event, we
noticed that the CS misses are interspersed between regular misses,
and the distribution of CS misses within the regular misses varies. This
spread of CS misses adds to the problem of inherent difference in
the IPC value. We developed the sampling-based framework after
realizing the limitations of the IPC-based mechanism.

6. Impact of Cache Optimizations on CS Misses
In Section 1, we mentioned that the mechanisms that attempt to
improve the cache hit rate by addressing the traditional cache
misses exacerbate the problem associated with CS misses. Such
optimizations attempt to retain more data that will be useful in
the future, and CS events result in the loss of this data. Now, we
evaluate the impact of improving the replacement algorithm and
increasing the capacity of the cache on the number of CS misses.
We also assess the accuracy of the CS cost-estimation hardware
when it is applied to advanced replacement algorithms. Furthermore,
we provide the performance-improvement results obtained by using
the ETS mechanism in conjunction with these algorithms. In our
experiments, the first-level and the middle-level caches use the
LRU replacement policy, and our replacement-policy studies are
limited to the LLC.

6.1 Replacement Algorithm
Thus far, we have assumed that the cache implemented the LRU
replacement policy. It performs poorly in the following two scenarios:
when the size of the working set is larger than the capacity of the
cache, and when references to nontemporal data (scans) cause a
frequently referenced working set to be discarded. Solutions were
proposed to address one or more of these shortcomings of the
LRU algorithm: dynamic insertion policy (DIP), rereference interval
prediction (RRIP), and signature-based hit prediction (SHiP). DIP
chooses between two policies—bimodal insertion policy (BIP) and
LRU policy—dynamically depending on which policy incurs fewer
misses. The selection is made through dynamic set sampling and
set dueling [6]. RRIP policy works by predicting the rereference
interval of a cache line. The work proposes two policies: static RRIP
(SRRIP) and dynamic RRIP (DRRIP). DRRIP again uses set dueling
to identify which of SRRIP and bimodal RRIP (BRRIP) performs
the best [7]. Finally, SHiP works by correlating the rereference
behavior of a cache line with its signature [8]. We use the program
counter (PC) value to derive the signature.

Now, we present the results to show how the estimation hardware
performs for replacement policies other than LRU. Specifically, we
present the results for DRRIP and SHiP algorithms. The results

of logic necessary to organize the logical entities. It should be
noted that the physical organization of the ATD is still the same as
it is for the original estimation mechanism described in section 3.1.

The estimation mechanism works as before, with the SS updating
the respective counters for the number of CS misses. When the
application is being switched out, the values of the two counters
are used to determine if the estimated value is accurate. Specifically,
we compute the ratio of the absolute difference of the two counter
values and their sum. A large value of this ratio indicates that the
estimate is inaccurate. Otherwise, the computed sum of the two
counter values serves as the estimated value for the number of CS
misses corresponding to the SS. This number is scaled to the total
number of sets in the cache to get the final estimated value. The
specified ratio is provided for all benchmarks in Figure 12. The
value for milc is 0.30, while the corresponding value for all other
benchmarks is at most 0.15. The computed ratio is a measure of
divergence between the two counter values. When the estimate
is inaccurate, the divergence is large. If this is the case, we ignore
the estimate and keep the time-slice value intact.

5.4 Hardware Overhead
In this section, we quantify the additional hardware necessary to
support the ETS mechanism. The storage component of the overhead
consists of the following: (1) tags for the sample sets in the ATD and (2)
counters for tracking the number of CS misses. This component is
computed in Table 3. We assume a physical address space of 40 bits
and use the same baseline LLC capacity of 2MB used previously. The
LLC is organized as a 16-way associative cache for a total of 2,048 sets.
Note that we used 1/16 of total sets for the number of SS throughout
this paper. Additional logic is required in order to invalidate the ATD
entries (to emulate a CS event), detect a CS miss (a 2-ip logic gate),
and increment the CS- MISS-CNT counter. The overhead due to
the extra logic is negligible, similar to the storage overhead.

Size of an MTD entry (address + metadata) 4B

Size of an ATD entry (valid-bit) 1 bit

Number of ATD entries (16 per set × 128 sets) 2048

Overhead of ATD 256B

Size of counter
(log 2 {number − of − cache − lines − in − ATD})

1.5B

Overhead due to 2 counters 3B

Area of baseline LLC (128kB tags + 2MB data) 2176kB

% increase in LLC area (260B/2176kB) 0.012%

Table 3. Storage overhead to support the ETS mechanism

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 12. Divergence ratio of CS-MISS-CNT counter values, used to determine the
accuracy of CS cost estimate. A large value of the ratio denotes that the CS cost
estimate is inaccurate.

 3 1

6.2 Cache Size
We now consider the impact of another important optimization—
increasing the capacity of the cache—on the number of CS misses.
We present the results for all the benchmarks in Figure 15. We obtained
the results for three different cache sizes: 1MB, 2MB, and 4MB. We
provide the evaluation results for three replacement algorithms:
LRU, DRRIP, and SHiP.

The number of CS misses for 2MB and 4MB cache sizes are
normalized with respect to that for the capacity of 1MB. In general,
for all benchmarks and replacement policies, the number of CS
misses increases as the cache size increases. In several cases, the
increase is by a factor of 5X or more from 1MB capacity to 4MB
capacity. For cactusADM, with the DRRIP replacement policy, the
number of CS misses increases by a factor of 101X from 1MB capacity
to 4MB capacity. In summary, the results indicate that increasing
the cache capacity has a significant impact on the number of CS
misses experienced by the application. The performance penalty
due to the increased number of CS misses will be commensurate
with the magnitude of increase in the number.

correspond to a private cache with a capacity of 2MB. In Figure 13(a),
we show the percentage error in estimation of the number of CS
misses. For each algorithm, we present the results generated using
128 SS. Using 128 SS, which correspond to a 1/16 fraction of the
total number of sets, we obtain an accurate estimate for the
number of CS misses. The average percentage error in estimation
is 2.8% and 2.4% for DRRIP and SHiP algorithms (excluding milc)
respectively. The estimation error for milc is 29% and 18%
respectively. These results demonstrate that the estimation
hardware, because it is based on sampling, lends itself very
well to other replacement algorithms.

Next, we consider the impact of the replacement algorithm on the
number of CS misses suffered by an application. In Figure 13(b),
we show how the number of CS misses varies with the replacement
algorithm. The values for DRRIP and SHiP are normalized with respect
to the values for LRU. For several benchmarks, the number of CS
misses increases pronouncedly for DRRIP and SHiP when compared
to LRU. The maximum increase in the number of CS misses (by a
factor of 20X) is observed in case of sphinx3 for both DRRIP and SHiP.
The geometric mean across all benchmarks is 1.6 and 2 for DRRIP
and SHiP respectively. These results substantiate our hypothesis
that adopting advanced replacement algorithms accentuates the
problem associated with CS misses.

The IPC results obtained by employing the ETS RR scheduling
algorithm are shown in Figures 14(a) and 14(b) for DRRIP and
SHiP policies respectively. The experimental methodology used
is similar to that employed in section 5.1. The values corresponding
to the ETS algorithm are normalized with respect to the values for
the UTS algorithm (2.5ms time slices). The applications are sorted
in ascending order of the benefit derived from the ETS algorithm.
Figure 14 also shows the IPC results corresponding to a 10ms time-
slice value normalized with respect to the results for the UTS
algorithm. The IPC results obtained using the ETS algorithm are
within 4% of the results obtained using a constant value of 10ms
for the time slice. It can be inferred from these results that the ETS
algorithm is equally applicable for advanced replacement policies.
For both DRRIP and SHiP policies, the performance improvement
due to the ETS algorithm is 10% or more in case of 11 applications.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

Figure 13. (a) Percentage error in estimation of the number of CS misses (b) Impact of
advanced replacement algorithms on the number of CS misses

Figure 14. IPC improvement by adopting the ETS RR CPU-scheduling algorithm for
(a) DRRIP and (b) SHiP replacement algorithms

Figure 15. Impact of increasing the cache size on the number of CS misses for (a) LRU,
(b) DRRIP, and (c) SHiP replacement algorithms

3 2

However, advanced replacement algorithms were proposed that
perform better than the LRU algorithm. Also, analytical models are
suitable for offline analysis, but the feasibility of their implementation
in hardware while incurring a low area overhead is not considered.
Our solution’s approach is implemented using very low hardware
overhead to work in a dynamic environment for any cache
configuration, thereby addressing the previously pointed-out
limitations of the analytical models.

7.3 Employing Prefetching to Cope with CS Misses
The performance degradation due to CS misses can be addressed
through two different means: by (1) increasing the time slice value (2)
prefetching the cache state just before or when the new schedule
starts. The former method is a preventive measure and the latter is
a cure. Prefetching was suggested to mitigate the cost of additional
cache misses incurred because of a CS event. The general idea is to
record the application’s locality at the time when it gets swapped
out. The locality is restored through prefetching the next time
application gets CPU time. Previously proposed solutions that
employ prefetching differ in how the locality is stored and restored.
Cui et al. [22] employ global-history-list (GHL) prefetching. GHL
maintains a complete list of cache lines, which is ordered by recency
of use. Daly et al. [1] studied the impact of CS misses in highly
partitioned virtualized systems. They proposed cache restoration
as a solution to prefetch the working set and thereby warm the cache.
GHL and cache restoration, although they differ in implementation
details to some extent, perform similarly. GHL performs slightly
better at the expense of more hardware and complexity. In the
most recent related work [3], the authors proposed methods to
reduce the bandwidth overhead of these prefetchers.

Brown et al. [23] proposed accelerating postmigration thread
performance by predicting and prefetching the working set of the
application. In the proposed solution, access behavior of a thread
is captured and summarized into a compact form premigration. On
the new core, the summary is used to prefetch appropriate data to
create a warm state. Prefetching the data after a CS event serves
to cure the cold-start problem. However, ETS works to minimize the
number of cold starts for those applications for which it matters.
The techniques presented in this paper can provide guidance as to
when prefetching can be beneficial and when it is not likely to help.
Zebchuk et al. [3] identified the inability of all cache-restoration
prefetchers to dynamically adapt to the workload behavior as their
main limitation. Our framework can be potentially used in conjunction
with prefetching to address this key drawback. They can complement
each other to achieve a synergistic effect.

7.4 Dynamic Set Sampling
Dynamic set sampling (DSS) was previously used to achieve
multiple goals. The key intuition behind set sampling is that it is
sufficient to monitor a relatively small fraction of the sets in the
cache in order to understand the behavior of the entire cache. DSS
was used in conjunction with set dueling to decide which of two or
more policies performs the best at any given point. This technique
was used to select the best-performing replacement policy: LIP
versus BIP [6], MLP-aware versus traditional [24], and SRRIP versus
BRRIP [7]. In a system with private LLCs, it was also used to determine
if each cache should act as a spiller or a receiver [25]. In the context

In summary, cache optimizations accentuate the problem associated
with CS misses. Therefore, in the presence of such optimizations,
estimating the CS miss cost accurately and incorporating the estimate
into CPU-scheduling algorithms become even more important.

7. Related Work
Studies related to context switching have received much attention
from both the industry and the academia over a long period of time.
We summarize, compare, and contrast the works that closely relate to
the techniques proposed in this paper under four different categories.

7.1 Performance Impact of Context Switching
Many studies aimed at understanding the performance impact of
CS events. Agarwal et al. [9] showed that multiprogramming activity
significantly degrades cache performance, and that the impact
grows with increase in cache size. Mogul et al. [10] estimated the
performance reduction caused by a CS to be in the order of tens
to hundreds of microseconds, depending on the cache parameters.
Suh et al. [11] considered the performance impact of context switching
on page faults. They proposed to mitigate the problem using job
speculative prefetching. Chiou et al. [12] proposed that memory
scheduling, potentially at all levels of the memory hierarchy, should
drive CPU scheduling rather than the other way around as it is
done in most systems.

Koka et al. [13] characterized CS misses and quantified their impact
in the case of transactional workloads. They investigated the potential
for intelligent process scheduling that minimizes cache misses
across CS boundaries. Li et al. [14] concluded that the indirect CS
overhead due to cache perturbation is more significant than the
direct overhead. Tsafrir [15] and David et al. [16] calculated the
indirect overhead due to a CS event for Intel and ARM platforms
respectively. In summary, most of the works concluded that the
indirect overhead, due to cache perturbation, associated with CS
events is significant. It is this overhead that we attempt to address
through our proposal.

7.2 Analytical Models
Several analytical models were proposed to explain the relationship
between an application’s temporal reuse behavior and its vulnerability
to CS misses. Such models need to factor in all essential variables
to have a sufficient resolution. Agarwal et al. [17] and Suh et al. [18]
[19] proposed analytical models to estimate the overall cache miss
rate, including fully associative cache, in order to obtain a continuous
miss-rate curve, which is required as profiling information. This
assumption does not hold true in case of the LLC. The model by
Hwu et al. [20] was aimed at predicting the worst-case number of
CS misses. Liu et al. [21] classified CS misses into two categories:
replaced misses and reordered misses. Further, they developed
an analytical model to reveal the relationship among cache design
parameters, an application’s temporal reuse pattern, and the
number of CS misses the application suffers from. They applied
the devised model to study the impact of prefetching and cache
size on the number of CS misses.

Analytical models make certain assumptions to render the task of
making the model tractable. For example, the model by Liu et al.
[21] is designed under the assumption of LRU replacement policy.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

 3 3

mechanism is only 0.01% for a 2MB cache. We used the estimated
cost of a CS event, in terms of the number of CS misses, to modify
the time slice in an elastic manner. In the case of cache-restoration
prefetchers, the estimated number of CS misses can provide guidance
as to when prefetching can be beneficial and when it is not likely to
help. The inability of all cache-restoration prefetchers to dynamically
adapt to the workload behavior has been identified as their main
limitation. Our CS cost-estimation framework can be potentially used
in conjunction with them to address the specified key drawback.

Acknowledgments
This work was supported in part by the Ministry of Science, ICT &
Future Planning, Korea, under the R&D program supervised by the
Korea Communications Agency (KCA- 2013-11921-03001), VMware,
and C-FAR, one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

References
1. D. Daly and H. W. Cain, “Cache restoration for highly partitioned

virtualized systems,” in International Conference on High
Performance Computer Architecture (HPCA), 2012, pp. 1–10.

2. A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
& dead-block correlating prefetchers,” in ISCA, 2001,
pp. 144–154.

3. J. Zebchuk, H. W. Cain, V. Srinivasan, and A. Moshovos,
“Recap: a region-based cure for the common cold cache,”
in International Conference on High Performance Computer
Architecture (HPCA), 2013, pp. 83–94.

4. M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches,” in MICRO, 2006, pp. 423–432.

5. A. Jaleel et al., “Adaptive insertion policies for managing shared
caches,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2008, pp. 208–219.

6. M. K. Qureshi et al., “Adaptive insertion policies for high
performance caching,” in International Symposium on
Computer Architecture (ISCA), 2007, pp. 381–391.

7. A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval
prediction (RRIP),” in International Symposium on Computer
Architecture (ISCA), 2010, pp. 60–71.

8. C.-J. Wu et al., “Ship: signature-based hit predictor for high
performance caching,” in MICRO, 2011, pp. 430–441.

9. A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance
of operating system and multiprogramming workloads,” ACM
Trans. Comput. Syst., vol. 6, no. 4, pp. 393–431, 1988.

10. J. C. Mogul and A. Borg, “The effect of context switches
on cache performance,” in International Conference on
Architectural Support for Programming Languages and
Operating systems (ASPLOS), 1991.

of a shared cache, it was used to determine whether each thread
among a group of threads sharing the cache should implement LIP
versus BIP policy [5]. Also, in the context of a shared cache, DSS
was used independently (without set dueling) to partition the ways
of the cache in the best possible manner by monitoring utility [4].
To our knowledge, this is the only instance in which DSS is used
to estimate the absolute value of a parameter as we used it to
estimate the number of CS misses.

8. Conclusion
In a system employing multitasking, an application suffers from
cache misses due to CS events in addition to the typical cache
misses. CS misses happen as a result of the displacement of the
cache state, which is caused by other applications intervening
between two consecutive schedules of an application of interest.
CS misses are more of a problem in systems that support multitasked
virtualization. Such systems experience severe cache pollution as
a consequence of the additional degree of multitasking, above and
beyond the regular OS-level multitasking. However, the extent to
which an application suffers from CS misses varies from one to
another, depending on the temporal reuse behavior. Whereas
some applications suffer only mildly, others suffer severely. We
made the following contributions through this paper:

because of context switching. In response to this phenomenon,
we proposed to estimate the penalty due to a CS event and use
it to facilitate intelligent time slicing by employing ETS. The intuition
behind ETS is to provide longer yet infrequent time slices to
those applications that are affected severely, while keeping the
time slices allocated to the unaffected applications intact.

mechanism that incurs low area overhead. We characterized the
accuracy of estimation of the proposed mechanism for multiple
configurations and showed that the mechanism is very reliable.

incorporated into the design of a CPU-scheduling algorithm. We
validated the potential of ETS to reduce the negative impact of CS
events on performance without sacrificing response-time behavior.

algorithms and increasing the cache size on CS misses and found
that these optimizations aggravate the problem associated with
CS misses.

The ETS algorithm developed in this paper allocates longer time
slices on the basis of their utility to applications. For various cache-
management policies, the speedup obtained using the ETS algorithm
is within 4% of that realized using a constant value of 10ms for the
time slice. We augmented the UTS RR CPU-scheduling algorithm
in order to derive the ETS RR CPU-scheduling algorithm. However,
the ETS algorithm is implemented in software and can be optimized
for a target system. One possible direction for future research is to
investigate how CS cost estimate can be incorporated into other
CPU-scheduling algorithms while respecting their original objectives.
The hardware overhead of the proposed CS cost-estimation

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

3 4

19. G. E. Suh, S. Devadas, and L. Rudolph, “A new memory
monitoring scheme for memory-aware scheduling and
partitioning,” in International Conference on High Performance
Computer Architecture (HPCA), 2002, pp. 117–128.

20. W.-m. Hwu and T. M. Conte, “The susceptibility of programs
to context switching,” IEEE Transactions on Computers, vol. 43,
no. 9, pp. 994–1003, 1994.

21. F. Liu and Y. Solihin, “Understanding the behavior and
implications of context switch misses,” ACM Trans. Archit.
Code Optim., vol. 7, no. 4, pp. 21:1–21:28, 2010.

22. H. Cui and S. Sair, “Extending data prefetching to cope with
context switch misses,” in International Conference on Computer
Design (ICCD), 2009, pp. 260–267.

23. J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread
migration via cache working set prediction,” in International
Conference on High Performance Computer Architecture
(HPCA), 2011, pp. 193–204.

24. M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
MLP-aware cache replacement,” in International Symposium on
Computer Architecture (ISCA), 2006, pp. 167–178.

25. M. K. Qureshi, “Adaptive spill-receive for robust high-
performance caching in CMPs,” in International Conference
on High Performance Computer Architecture (HPCA), 2009,
pp. 45–54.

11. G. E. Suh, E. Peserico, S. Devadas, and L. Rudolph, “Job-
speculative prefetching: Eliminating page faults from context
switches in time-sharing systems,” 2001.

12. D. Chiou et al., “Scheduler-based prefetching for multilevel
memories,” 2001.

13. P. Koka and M. H. Lipasti, “Opportunities for cache friendly
process scheduling,” 2005.

14. C. Li, C. Ding, and K. Shen, “Quantifying the cost of context
switch,” in Workshop on Experimental Computer Science, 2007.

15. D. Tsafrir, “The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops),” in Workshop
on Experimental Computer Science, 2007.

16. F. M. David, J. C. Carlyle, and R. H. Campbell, “Context switch
overheads for Linux on ARM platforms,” in Workshop on
Experimental Computer Science, 2007.

17. A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical
cache model,” ACM Trans. Comput. Syst., vol. 7, no. 2,
pp. 184–215, 1989.

18. G. E. Suh, S. Devadas, and L. Rudolph, “Analytical cache models
with applications to cache partitioning,” in International
Conference on Supercomputing (ICS), 2001, pp. 1–12.

REDUCING CACHE-ASSOCIATED CONTEXT-SWITCH
PERFORMANCE PENALTY USING ELASTIC TIME SLICING

