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Abstract—This paper investigates secure low-cost in-DRAM
trackers for mitigating Rowhammer (RH). In-DRAM solutions
have the potential to solve the RH problem within the DRAM
chip without relying on other parts of the system. However, in-
DRAM mitigation suffers from two key challenges: First, the
mitigations are synchronized with refresh, which means that
we cannot mitigate at arbitrary times. Second, the SRAM area
available for aggressor tracking is limited to only a few bytes.
Existing low-cost in-DRAM trackers (such as TRR) have been
broken by well-crafted access patterns, whereas, secure counter-
based schemes require impractical overheads of hundreds or
thousands of entries per bank. The goal of our paper is to develop
an ultra-low-cost secure in-DRAM tracker.

Our solution is based on a simple observation: If only one row
can be mitigated at refresh, we should ideally need to track only
one row. We propose a Minimalist In-DRAM Tracker (MINT),
which provides secure mitigation with just a single entry. Unlike
prior trackers that decide the row to be mitigated based on
the past behavior (select based on activation counts) or solely
based on the current activation (select with some probability),
MINT decides which row in the future will get mitigated. At
each refresh, MINT probabilistically decides which activation in
the upcoming interval will be selected for mitigation at the next
refresh. MINT provides guaranteed protection against classic
single and double-sided attacks. We also derive the minimum
RH threshold (TRH*) tolerated by MINT across all patterns.
MINT has a TRH* of 1482, which can be lowered to 356 with
RFM. The TRH* of MINT is lower than a prior counter-based
design with 677 entries per bank, and is within 2x of the TRH*
of an idealized design that stores one-counter-per-row. We also
analyze the impact of refresh postponement on the TRH* of
low-cost in-DRAM trackers, and propose an efficient solution to
make such trackers compatible with refresh postponement.

I. INTRODUCTION

Rowhammer (RH) is a data-disturbance error that occurs
when rapid activations of a DRAM row causes bit-flips in
neighboring rows [23]. Rowhammer is a serious security
threat, as it gives an attacker a powerful tool to flip bits in
protected data structures, such as page tables, which can result
in privilege escalation [3], [5], [8]–[10], [41], [44] and breach
of confidentiality [25]. The RH problem has been difficult
to solve because the Rowhammer Threshold (TRH), which is
the number of activations required to induce a bit-flip, has
continued to reduce with successive generations of DRAM,
reducing from 140K [23] to about 4.8K [19] in the last decade.
Thus, Rowhammer solutions must scale to low TRH.

Typical hardware-based mitigation for RH relies on a track-
ing mechanism to identify the aggressor rows (i.e., the rows
that get activated repeatedly) and issue a refresh to neighboring
victim rows [11]. Hardware-based RH mitigation can be

deployed at the Memory-Controller (MC) or within the DRAM
chip (in-DRAM). The in-DRAM approach has the advantage
that it can solve the RH problem transparently within the
DRAM chip without relying on changes to other parts of the
system. The in-DRAM approach also has the advantage that
memory vendors can tune their mitigation solution to target the
TRH observed in their chips. This work focuses on low-cost
in-DRAM RH mitigation.

In-DRAM RH mitigation suffers from two key constraints.
First, the RH mitigation is performed transparently within the
refresh operation (REF). For example, for DDR5, the REF
operation occurs every 3.9 microseconds, and the DRAM chip
can steal some of the time reserved for REF for performing
RH mitigation (refresh the victim rows of a selected aggressor
row). It is not possible for DRAM chips to sometimes take
longer to do REF if there are more aggressor rows, as this
would violate the deterministic timing guarantees of DDR5.
This restriction means that it is not enough to track aggressor
rows, but we must spread the mitigation of aggressor rows over
as many REF periods, as we cannot support bursty mitigation.
Second, the SRAM budget available for tracking aggressor
rows is quite small (often a few bytes per bank) and this
budget is insufficient for tracking all the aggressor rows. For
example, DDR4 devices contain Targeted Row Refresh (TRR)
tracker containing 1-30 entries [11], however, such trackers
have been defeated with attack patterns such as TRRespass [8]
and Blacksmith [14]. Thus, systems continue to be prone to
RH attacks even in the presence of such deployed mitigations.

Designing secure low-cost in-DRAM trackers has proven to
be a significant challenge. The recent solutions from industry
have also not proven to be secure. For example, the DSAC [12]
tracker from Samsung is vulnerable to Blacksmith patterns
(when designed for a TRH of 2K, DSAC results in 9K
unmitigated activations on an aggressor row with Blacksmith).
Similarly, the PAT [22] tracker from Hynix claims 30% lower
failure rate than TRR (however, as TRR can be broken within
a few minutes, PAT can also be broken within a few minutes).

Prior studies, such as ProTRR [29] and Mithril [20], bound
the minimum number of tracking entries required to deter-
ministically and securely mitigate a given TRH. These studies
show that an optimal number of entries in the tracker would
be several thousand per bank for current TRH (e.g. 1400
entries for TRH of 2K). This SRAM overhead is prohibitively
large for practical adoption in DRAM chips. Any tracker with
number of entries below the optimal will always suffer from
a non-zero probability of failure [29].
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Fig. 1. (a) Our goal is to develop secure low-cost trackers. (b) In-DRAM RH mitigation is performed at REF and the tracker decides which row to mitigate.
Trackers can be categorized into three types (1) past-centric, such as counter-based tracking (2) present-centric, such as selecting the currently activated row
with some probability (3) future-centric, our design, which decides at each REF which row will be picked for mitigation in the upcoming interval.

Figure 1 (a) provides an overview of the landscape of in-
DRAM trackers. Current in-DRAM trackers are either insecure
or incur a prohibitively high-cost. The goal of our paper is
to develop a low-cost secure in-DRAM tracker. Our solution
is based on a simple insight: if in-DRAM mitigation is
limited to mitigating at-most one aggressor row per REF,
ideally we should need a tracker with only a single-entry
(that identifies the aggressor row to be mitigated). We develop
a classification of in-DRAM trackers that helps in guiding
our solution. Figure 1 (b) shows an overview of in-DRAM
rowhammer mitigation. A REF occurs at each tREFI interval
and there are activations between REF. At each REF, one
aggressor row is selected for mitigation. Depending on how
this selection is made, we can classify the in-DRAM trackers
into three types. First, past-centric, which makes the selection
decision based on past behavior. For example, counter-based
schemes (ProTRR and Mithril) select a row with the maximum
counter value. Such trackers need a large amount of storage.
Second, present-centric, which makes the selection decision
probabilistically based only on the currently activated row.
For example, a PARA [23] like in-DRAM scheme would
select each activated row with an Independent and Identically
Distributed (IID) probability of p. If selected, the row address
is stored in a single-entry tracker for getting mitigated at the
next REF. The problem with such an InDRAM-PARA design is
that a selected row can be over-written before reaching REF by
another selected row and thus miss the chance of mitigation.
Furthermore, even if the same row gets activated throughout
the tREFI interval, there is still a non-negligible likelihood
that the row will still not be selected for mitigation. Ideally,
we want a single-entry tracker that avoids both problems
of InDRAM-PARA (no over-writing a selected entry and
guaranteed selection of one row in tREFI). The Minimum TRH
(TRH*) tolerated by the InDRAM-PARA is 7.6K.

We propose a Minimalist In-DRAM Tracker (MINT) that
provides secure RH mitigation with a single-entry. MINT
offers a new category, the third-type, future-centric. Let there
be a maximum of M activations in tREFI. At each REF,
MINT decides which of the M activations in the upcoming
interval should be selected for mitigation at the next REF.
MINT performs this selection using a Uniform Random (U-
RAND) choice of all 1 to M positions. This position is stored in
a Selected Activation Number (SAN). Each activation in tREFI

is given a sequence number, and when this number reaches
SAN, the row is designated for mitigation at next REF.

By design, MINT avoids overwriting the selection. Sec-
ondly, MINT guarantees selection of one row (from M acti-
vations), thus it provides guaranteed protection against classic
single-sided and double-sided attacks, if such attacks are done
continuously. We analyze the worst-case pattern for MINT for
determining the TRH*. We also analyze Transitive Attacks [24]
that leverage victim refresh to cause RH failures in a distant
row. Our analysis shows that MINT has a TRH* of 2800 (1400
for double-sided, TRH-D*). The TRH* of MINT is similar to
Mithril [20] with 677 entries per bank.

DDR5 allows the postponement of up-to four REF opera-
tions. Delayed refreshes are especially problematic for low-
cost trackers as they track limited entries, which may be
dislodged (without mitigation). We analyze the impact of de-
layed refreshes on low-cost trackers and propose a generalized
solution, the Delayed Mitigation Queue (DMQ), which allows
low-cost trackers to operate with REF postponement. With
DMQ, the TRH-D* of MINT is 1482.

The threshold tolerated by MINT (with support for refresh
postponement) is lower than a Mithril tracker with 677-
entries per bank, and is within 2x of an idealized tracker
that has one counter per row. Thus, our proposal bounds the
gap between the lowest-cost tracker (single-entry) and an
idealized tracker (per-row counters) to a narrow range (2x).

Overall, this paper makes the following contributions:

1) We propose Minimalist In-DRAM Tracker (MINT) that
provides secure RH mitigation with a single entry.

2) We show that MINT has a TRH* of 2800 (TRH-D*
1400), similar to a 677-entry tracker.

3) To the best of our knowledge, this is the first paper to
study the impact of refresh postponement on low-cost
trackers. We propose Delayed Mitigation Queue (DMQ)
to enable low-cost tracking with refresh postponement.
MINT+DMQ has a TRH-D* of 1482.

4) We combine MINT with the RFM feature of DDR5 to
to obtain a TRH-D* as low as 356.

The storage overhead of MINT is four bytes (per bank) and
the performance and power overheads are negligibly small.
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II. BACKGROUND AND MOTIVATION

A. DRAM Architecture and Parameters.

To access data from DRAM, the memory controller must
first issue an activation (ACT) for the DRAM row. To ensure
data retention, the memory controller sends a refresh command
every tREFI that refreshes a subset of rows. Table I shows
the DDR5 parameters, derived from DDR5 datasheet (DDR5-
5200B bin with 32Gb chips). The two critical parameters for
our study are: (1) the maximum number of ACT (MaxACT)
possible within tREFI is 73 and (2) we assume that the device
performs one Rowhammer mitigation at each refresh event.

TABLE I
DRAM PARAMETERS (FROM DDR5 DATASHEET)

Parameter Explanation Value
tREFW Refresh Window 32 ms
tREFI Time interval between REF Commands 3900 ns
tRFC Execution Time for REF Command 410 ns
tRC Time between successive ACTs to a bank 48 ns
MaxACT M = ( tREFI - tRFC ) / tRC 73

B. Threat Model

Our threat model assumes that an attacker can issue memory
requests for arbitrary addresses. We assume that the attacker
knows the defense algorithm but does not have physical access
to the system (e.g., the outcome of random-number generator).
Our defense aims to prevent Rowhammer against all access
patterns, including Blacksmith [14], and Half-Double [24].
To keep our analysis simple, we do not consider the Row-
Press [28] attack. Our recent work [38] shows that Row-Press
can be easily mitigated by converting the row-open time into
an equivalent number of activations (Appendix C shows how
our solution can be modified to tolerate Row-Press).

C. DRAM Rowhammer Attacks

Rowhammer [23] occurs when a row (aggressor) is activated
frequently, causing bit-flips in nearby rows (victim). The
minimum number of activations to an aggressor row to cause
a bit-flip in a victim row is called the Rowhammer Threshold
(TRH). TRH can be reported for a single-sided pattern (TRH-S)
or a double-sided pattern (TRH-D). As shown in Table II, TRH
has dropped significantly, from 139K (TRH-S) in 2014 [23]
to 4.8K (TRH-D) in 2020 [19].

TABLE II
ROWHAMMER THRESHOLD OVER TIME

DRAM Generation TRH-S (Single-Sided) TRH-D (Double-Sided)
DDR3-old 139K [23] –
DDR3-new – 22.4K [19]

DDR4 – 10K [19] - 17.5K [19]
LPDDR4 – 4.8K [19] - 9K [24]

Rowhammer is a serious security threat, as an attacker
can use it to flip bits in the page table to perform privilege
escalation [8], [9], [41], [50] or break confidentiality [25].

Solutions for mitigating Rowhammer typically rely on a
mechanism to identify the aggressor rows and then perform a
mitigation by refreshing the victim rows. The identification of
aggressor rows can be done either at the Memory Controller
(MC) or within the DRAM chip (in-DRAM).

D. Memory-Controller Based Mitigation

Memory-Controller (MC) based solutions identify aggres-
sor rows either using counters [26] [33] [34] or probabilis-
tically [18] [23]. These solutions suffer from three major
shortcomings. First, DRAM chips internally use proprietary
mapping, so this solution must rely on the Directed RFM
(DRFM) command to perform mitigation. DRFM incurs a
latency of tRFC (410ns), resulting in significant slowdown,
and there is a rate limit of one DRFM per two tREFI, placing
a high limit on the TRH that can be tolerated. Second, the
solution must be conservatively designed for the lowest TRH,
across vendors and over the years of the system lifetime. Third,
the cost and complexity of tracking can deter some processor
vendors from adoption, leading to fragmented protection.

E. In-DRAM Mitigation

The advantage of in-DRAM mitigation is that it can solve
Rowhammer within the DRAM chips, without relying on other
parts of the system. Furthermore, DRAM manufacturers can
tune their solution to the TRH of their chips.

In-DRAM mitigation typically performs the mitigation
transparently during the time provisioned for the refresh
operations (commodity DRAM is a deterministic device, so
it is not possible to do mitigative activations while servicing
the normal demand accesses). A recent study [29] observes
that DDR5 chips support mitigating one aggressor row at each
tREFI, or one per two tREFI. In our paper, we assume a default
rate of mitigating one aggressor row per tREFI.

F. Low-Cost In-DRAM Trackers: Not Secure

For guaranteed protection, the in-DRAM tracker must be
able to identify all aggressor rows and mitigate them before
they receive TRH activations. Unfortunately, the SRAM bud-
get available for tracking within the DRAM chip is limited
to only a few bytes. Therefore, practical in-DRAM trackers
(such as TRR from DDR4, DSAC [12] from Samsung, and
PAT [22] from SK Hynix) are limited to only tracking a few
entries (1-30), and can be broken within a few minutes using
patterns that target a large number of aggressor rows [8] or
use decoy rows [14]. Thus, the system remains vulnerable to
RH attacks, even in the presence of such low-cost trackers.

G. Optimal In-DRAM Trackers: Not Practical

The minimum number of entries needed for an in-DRAM
tracker to deterministically and securely tolerate a threshold
of TRH is determined by the rate of mitigation (e.g. one per
tREFI). If several rows get identified as aggressor rows at a
similar time, then in-DRAM solution would need to spread
their mitigation over several tREFI intervals, leading to more
activations on the unmitigated aggressor rows. Two concurrent
works [20] [29], establish the bounds on TRH tolerated by in-
DRAM mitigation arising from such a restriction. They also
bound the optimal number of entries needed to tolerate a given
TRH. We call the designs that have the minimum number
of tracking entries to tolerate a given threshold as optimal
trackers. Examples of optimal trackers include:
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Mithril [20]: Mithril uses a Counter-based Summary algo-
rithm to track the activation counts of heavily activated rows.
At mitigation, the row with the highest counter value is
mitigated and the counter value is reduced by the min count.

ProTRR [29]: ProTRR performs victim tracking using a
Misra-Gries tracker to identify the top victim rows. At mit-
igation, the victim row(s) with the highest counter value get
refreshed and removed from the tracker.

Given the TRH and the rate of mitigation, we can determine
the number of entries in the optimal trackers. For example, for
a mitigation rate of 1 per tREFI, for a TRH-D of 1K, Mithril
would require approximately 1400 entries. Note that each bank
requires an independent tracker, so the total number of tracker
entries to protect the entire DRAM rank (32 banks) would be
approximately 45K. Unfortunately, the limited SRAM budget
within the DRAM renders such trackers impractical.

H. Per-Row Counter-Table (PRCT)

The TRH tolerated by a in-DRAM mitigation depends on
both, the number of entries in the tracker and the rate of
mitigation (e.g. one per tREFI). To understand the limit of in-
DRAM mitigation, under a given rate-of-mitigation, we also
study an idealized design, Per-Row Counter-Table (PRCT),
which stores one counter per row in an SRAM table. Given
the large overheads, such a design is not practical, however, it
can still help us understand the TRH* gap between a practical
design and an idealized design. The TRH* tolerated by PRCT
is purely determined by the rate of mitigation. For example, at
1 mitigation per tREFI, PRCT can let two aggressor rows reach
623 activations each (victim subjected to 1226 activations).
Thus, the TRH* of PRCT is 1226 (623 double-sided).

I. Understanding the Impact of Refresh Postponement

DDR5 allows the postponement of up-to four REF op-
erations. Delayed refreshes can cause a row selected for
mitigation to be further subjected to an additional 292 (73x4)
activations. For counter-based mitigations [20], [22], [29]
refresh postponement increases the tolerated TRH by 292.
For example, the TRH* tolerated by PRCT with refresh
postponement becomes 1518 (double-sided 759). Delayed
refreshes are especially challenging for low-cost trackers with
only a few entries, as those entries may get dislodged before
getting mitigated during the period of refresh postponement.
For example, a PARFM tracker [20] that tolerates a threshold
of a few thousand (without refresh postponement) can be made
to deterministically cause 487K (!) activations on an attack
row without any mitigation under refresh postponement.

J. Goal of our Paper

The goal of our paper is to develop an ultra low-cost
and secure in-DRAM tracker with a tolerable threshold that
is close to the idealized design (PRCT). Furthermore, we
want our proposed design to be fully compatible with refresh
postponement, as handling such a feature is a non-negotiable
requirement for practical adoption. We first discuss the pitfalls
of simply extending PARA to an in-DRAM setting.

III. FUNDAMENTAL PITFALLS OF IN-DRAM-PARA

PARA [23] is a memory controller scheme that mitigates
each activated row with probability p. In this section, we show
that applying PARA to in-DRAM setting (InDRAM-PARA)
suffers from two fundamental shortcomings: (a) non-uniform
mitigation probability, depending on where the row activation
lies in the tREFI interval (b) frequent non-selection of any ac-
tivated row in the tREFI interval even if all the activation slots
are used. These shortcomings cause the threshold tolerated by
InDRAM-PARA to be 2.7x higher than an idealized policy
that mitigates all activations with equal probability.

REF A B C D E REF

SAR Mitigate 
SAR

p p p p p

Fig. 2. Design of InDRAM-PARA. Each activation is sampled with a
probability p and stored in SAR. At REF the row in SAR (if valid) is mitigated.

A. InDRAM-PARA: Design and Analysis

Figure 2 shows the overview of InDRAM-PARA. Each ac-
tivation is sampled with Sampling Probability (p). If sampled,
the row-address is stored in SAR (Sampled Address Register).
At REF, if SAR is valid, the row is mitigated. For a row to get
mitigated it must be both sampled and it must survive until
REF in SAR. For example, if Row-C is sampled, then later
sampling of Row-E evicts Row-C in SAR. For our design, all
activations are sampled with a uniform probability (p=1/73),
so the mitigation probability (Pmitigation) is proportional to
the survival probability (Psurvive), as shown in Equation 1.

Pmitigation = p · Psurvive (1)

Model for Survival Probability: Let there be M activations
between two refreshes (tREFI). The window starts with an
empty SAR. Let Row-A be accessed at the Kth activation and
get sampled into SAR. SAR will retain this entry if there is no
other insertion in the remaining (M-K) activations. If p (we
use p = 1/73) is the sample probability, then the Survival
Probability (SK) for position K is given by Equation 2.

SK = (1− p)(M−K) (2)

Fig 3 shows the survival-probability (SK) as the position
(K) is varied from 1 (earliest in tREFI) to 73 (last in tREFI).
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Fig. 3. Highly Non-Uniform Survival Probability for InDRAM-PARA
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The first position has the lowest survival-probability (0.37)
whereas the last position has the highest survival-probability
(1). Thus, with this design, the most vulnerable position has
2.7x lower mitigation probability compared to an idealized
scheme that mitigates all positions with probability p.

B. InDRAM-PARA: No-Overwrite Version
It is intuitive to think that the non-uniform mitigation of

InDRAM-PARA can easily be addressed by simply avoiding
the overwrite of SAR, if SAR had a valid entry. Figure 4 shows
an overview of such an InDRAM-PARA (No-Overwrite) de-
sign. While such a design guarantees 100% survival proba-
bility, it suffers from another equally critical problem of non-
uniform sampling. If a row gets sampled (e.g. Row-C), then
the probability of sampling for all later rows (e.g. Row-D
and Row-E) becomes zero. As survival probability is 1, the
mitigation probability of a activation is equal to the sampling
probability of that position within the tREFI interval.

REF A B C D E REF

SAR Mitigate 
SAR

p p p 0 0
X X

Fig. 4. Design of InDRAM-PARA that avoids overwriting SAR. While this
design has 100% survival probability, it has non-uniform sampling probability.

Model for Non-Uniform Sampling Probability: Let M acti-
vations between two refreshes (tREFI). The window starts with
an empty SAR. Let p be the designated sampling probability
at the start of the tREFI interval. Then the first row will
be selected with probability p. For all subsequent rows, the
sampling probability is either p or 0, depending whether
something was selected before. The sampling probability at
position K (PK) is given by Equation 3.

PK = p · (1− p)K (3)

Fig 3 shows the sampling probability (PK) as the position
(K) is varied from 1 (earliest in tREFI) to 73 (last in tREFI),
normalized to the first position in the window (which equals
p=1/73). We note that the sampling probability is highly non-
uniform, reducing to about 0.37x for the last position in
the window (so absolute sampling probability has reduced
from 1/73 to 1/73 * 0.37 = 1/200). Thus, even with this
design, the most vulnerable position has 2.7x lower mitigation
probability compared to an idealized scheme that performs
mitigation of all positions with probability p.

0 10 20 30 40 50 60 70
Position in tREFI Interval (1-73)

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g 
Pr

ob
. (

x 
1/

73
)

2.
7x

 L
ow

er

Fig. 5. Sampling Probability for InDRAM-PARA (No-Overwrite)

C. Impact of Non-Uniform Mitigation on Security
Figure 6 shows the mitigation probability of InDRAM-

PARA and InDRAM-PARA(No-Overwrite) normalized to an
ideal policy that mitigates each position with probability
p=1/73, as the position in the tREFI window is varied. Both
versions of InDRAM-PARA Designs have non-uniform miti-
gation, just that the most vulnerable position is different for
them (either first or last). For both designs, the most vulnerable
position has 2.7x lower mitigation rate than the ideal policy.
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Fig. 6. Mitigation Probability of InDRAM-PARA, InDRAM-PARA (No-
Overwrite) normalized to ideal policy with uniform mitigation (p=1/73).

Impact: Given any In-DRAM scheme, the attacker will focus
on the most-vulnerable position, so the overall security of the
design is determined by the most-vulnerable position. We note
that exploiting the non-uniform mitigation probability of In-
DRAM Trackers is a well-known technique in Rowhammer
attacks. For example, both SMASH [6] and BlackSmith [14]
use Refresh Interval Synchronization to converge on the most
vulnerable position within the tREFI window. Thus, non-
uniform mitigation has significant security implications.

Given 2.7x reduced mitigation probability, the threshold
tolerated by InDRAM-PARA is about 2.7x higher than an ideal
policy that mitigates all positions uniformly. For example, the
TRH* of Ideal is 2.8K and InDRAM-PARA is 7.6K.

D. The Problem of Non-Selection with InDRAM-PARA
Another shortcoming of InDRAM-PARA is that even if all

the activation slots of a tREFI window are used, it can still
have a significant probability that nothing will get selected,
thus missing out on the possibility of performing mitigation
at REF. Equation 4 shows the probability that nothing will be
selected in a tREFI window if M activations occur.

PNoSelect = (1− p)M = (1− 1/73)73 = 0.37 (4)

In our case, p=1/73, and M can be up-to 73. Thus, even if all
activations slots are used, InDRAM-PARA will skip mitiga-
tion 37% of the time. The non-selection of InDRAM-PARA
allows stressful attack patterns, such as the classic Single-
Side and Double-Sided Rowhammer attacks that continuously
activate the same one or two rows over the entire tREFI.

Key Takeaways: InDRAM-PARA suffers from non-uniform
mitigation over the tREFI interval, and such non-uniformity
has a significant impact on security and threshold. It also
suffers from non-selection. An ideal In-DRAM solution must
provide uniform mitigation probability for all activations,
and avoid non-selection. We propose such an ideal solution.
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IV. METHODOLOGY FOR ANALYZING SECURITY

We consider an event of one or more bitflips from Rowham-
mer as a failure. Thus, if any row receives TRH activations,
without an intervening mitigation, we declare it as a failure.

A. Model for Failure Probability in tREFW Window
We divide the time into windows of tREFW, as all rows get

refreshed every tRFW. We want to determine the probability
of failure at the kth activation, given the row is mitigated
with probability p at each activation. To the best of our
knowledge, the most complete analytical model for estimating
the probability of failure is by Sariou and Wolman [37] (it cor-
rects an off-by-one error of Mithril [20] and also incorporates
auto-refreshes). The probability of failure (Pk) at any given
activation (k) for a TRH of T is given by Equations 1-3.

Pk = 0 if k < T (5)

Pk = (1− p)T if k = T (6)

Pk = p · (1− p)T · (1− Pk-T-1) + Pk-1 if k > T (7)

Equation 1 and Equation 2 are trivial: (1) No failure with
less than T activations and (2) at K=T activations, failure hap-
pens if all activations escape selection. For K>T activations,
the recurrence is based on a powerful insight. For the row to
fail exactly at the Kth activation, following must be true: (1)
The position K-T must have received a mitigation (hence the
term p) (2) No mitigation since (hence the term (1− p)T ) (3)
Position K-T-1 must not already start with failure (hence the
term (1-Pk-T-1)). Finally, as failures are cumulative, the term
Pk-1. Figure 7 shows an overview of this model for T=4.

0 0 0

1 2 3 4 5 6 7 8 9

Mitigation(1-p)T

P4 P5 P6 P7 P8 P9

10
P10

No mitigation}
Fig. 7. Sariou-Wolman model for getting Pk for T=4. For failure at position-
10, position-6 must be failure-free, must get a mitigation, and none after.

B. Computing the Mean Time-to-Failure (MTTF)
For a given number of activations to an attack row

within tREFW, we use Equations 5-7 to estimate the failure
probability (PREFW ) per tREFW. Based on Sariou-Wolman
model [37], we account for auto-refresh by reducing PREFW

by a factor of (1-N/8192), where N denotes the length of the
successful sequence in terms of tREFI. Equation 8 shows the
Mean Time-to-Failure (MTTF) for a bank. The MTTF for a
system with B banks would be approximately B times lower.

Mean-Time-to-Failure (Bank) =
1

PREFW
· tREFW (8)

C. Minimum-Tolerated TRH: Key Figure-of-Merit
We use a default Target-MTTF (per-bank) of 10,000 years

(this is similar to the per-bank failure rate from naturally
occurring errors [4], sensitivity in Section VIII-B). We define
the Minimum Tolerated TRH (TRH*) as the lowest TRH for
which the design can meet the Target-MTTF. We denote TRH-
D* as the per-row TRH* for a double-sided pattern.

V. MINIMALIST IN-DRAM TRACKER (MINT)

Secure trackers require significant storage, whereas existing
low-cost trackers have been rendered insecure. To better un-
derstand this dichotomy, and develop a low-cost and secure
tracker, we classify tracker design-space into three types,
depending on how they select the row to be mitigated at a
given REF. First, past-centric, which considers past behavior,
for example, selecting the row with the highest counter value.
To do a reliable selection, significant amount of past behavior
is needed. Second, present-centric, which makes selection
decision purely based on the currently activated row (say select
the given row with a given probability and store it in a single-
entry tracker). Unfortunately, such InDRAM-PARA, suffers
from the problems of non-uniform mitigation probability over
tREFI and non-selection (even if the row is continuously
activated in the tREFI interval). Therefore, it has a high TRH*.
We propose a Minimalist In-DRAM Tracker (MINT), which
is future-centric and provides a secure mitigation with just a
single-entry. We first provide an overview and design of MINT,
then derive the security for worst-case pattern, then discuss the
impact of Transitive Attacks and Spatial Attacks.

A. Overview of MINT: A Single-Entry Tracker

Figure 8 shows an overview of MINT. Lets say each
tREFI window can have up-to M activations. At each REF,
MINT decides which of the future M activations must be
selected for mitigation at the next REF. It uses a Uniform
Random (URAND) selection for all possible M positions. Each
activation within tREFI is given a sequence number and when
it reaches the selected number, the given row (e.g. Row-C),
is selected for getting mitigated at the next REF. The process
repeats at each subsequent REF with a new URAND selection.

Note that the selection of MINT is done without knowing
which address will appear at the selected activation number.
By design, MINT does not suffer from overwrite problem of
InDRAM-PARA (as no more than one row can be selected for
mitigation). Furthermore, if a given address occurs M times
in the window, then it is guaranteed to be selected by MINT.

REF A B C D E REF
3

Fig. 8. Overview of MINT. At each REF, MINT decides (a priori) which
activation number will get selected for mitigation at next REF.

Note that, if an access pattern has fewer than M activations
within tREFI, then MINT can sometimes not select any row
for mitigation at the next REF. However, this does not impact
the security of MINT as the slot not used for activation can be
treated, for the purpose of analyzing security, as an activation
to a decoy (benign) row. For the attacker to have the highest
chance of success, an attack pattern must use all the activation
slots for causing damage. Therefore, for our security analysis,
it is safe to assume that all M activations are used in an attack.
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B. Design and Operation of MINT

Figure 9 shows the design and operation of MINT. MINT
consists of three registers: (1) Selected Activation Number
(SAN), which stores the activation number that will be se-
lected in the upcoming interval (2) Current Activation Number
(CAN), which provides a sequence number to each activation
in the tREFI window, and (3) Selected Address Register (SAR),
which stores the address of the row to be mitigated at the next
REF. SAR contains a valid bit to indicate if the SAR is filled.

REF A B C D E REF

CAN 1 2 3 4 5

SAR=C Mitigate
SAR

SAN=URand(1,73)
SAN=31 3 4

2

Fig. 9. Design and Operation of MINT. At each REF, SAN is set
with URAND. During tREFI, CAN tracks sequence number for ACT. If
CAN=SAN, the row address is stored in SAR. At REF, SAR is mitigated.

The maximum number of activations within the tREFI
window is 73 (so, M=73). 1 At each REF, the SAN is
initialized based on a URAND selection of all 1 to 73 slots.
The CAN is reset to 0. The SAR is set to invalid. 2 During
the tREFI, the CAN provides a sequence number to each
activation. For example, the first activation has CAN=1, second
has CAN=2, and so on. 3 When CAN is equal to SAN,
it indicates that the given address is selected for mitigation,
which means the row address is copied to SAR and SAR is
set to be valid. 4 At the next REF, if the SAR is valid,
the row-address stored in SAR gets mitigated. For mitigation,
we assume that the number of victim rows equivalent to the
Blast Radius is refreshed on either side of the given aggressor
row. The process repeats at each subsequent REF. MINT is
a single-entry tracker, as only the Selected Address Register
(SAR) holds the address of the row to be mitigated.

C. Impact of Classic Attacks: The Need for New Patterns

By design, MINT is robust against classic single-sided and
double-side patterns that operate continuously during tREFI.

Single-Sided Attack: If a pattern repeatedly activates a given
row, say Row-A (we use closed-page policy), during the entire
tREFI window, then MINT is guaranteed to select this row for
mitigation. Thus, MINT would limit such a classic single-sided
attack to at-most M activations on the attacked row.

Double-Sided Attack: If a pattern repeatedly activates a pair
of rows in alternating fashion and the pair shares a victim, say
Row-A and Row-C with shared victim Row-B, then MINT is
guaranteed to select one of the two rows (Row-A or Row-C),
which will cause a refresh of victim (Row-B). Thus, MINT
would limit the effect on victim to at-most M activations.

As classic attack patterns are not useful for analyzing the
security of MINT, we investigate the worst-case pattern for
MINT and use it to determine the TRH*.

D. Estimating the TRH* of MINT
Our analysis is based on three observations for MINT: (1)

The selection decisions are localized to within the tREFI, so
what happens in the previous or next tREFI does not impact
the selection during current tREFI. (2) The probability of a row
getting selected does not depend on the position in the tREFI
interval, as all positions are equally likely to get selected,
therefore reordering the address pattern within tREFI does
not impact security (3) If a given row is activated n times
within the same tREFI, it is n times more likely to get selected
for mitigation (in the limit, if n=73, the row has guaranteed
selection). So, successful attacks must avoid having a large
number of activations to the same row within the single tREFI.
These properties can help us identify the worst-case pattern.

Pattern-1: Single-Row, Single-Copy: This pattern focuses
the attack on a single row (Row-A). During each tREFI, it
performs only a single activation on Row-A and the remaining
72 activation slots remain unused. The pattern repeats 8192
times. During each tREFI, each activation of Row-A will get
selected with probability p=1/73. We use the Sariou-Wolman
model to determine the probability of failure (PREFW ) on the
8192nd activation. We use the PREFW to determine TRH*.
For this pattern, the TRH* is 2461.

Pattern-2: Multi-Row, Single-Copy: For faster attacks, the
pattern must try to use all of the 73 slots in the tREFI interval.
A simple way to achieve this is to perform a single activation
to k attack rows within the single tREFI. If PREFW (1) is
the failure probability for pattern-1, then with k lines, the
failure probability increases by k times. So, PREFW (k) =
k · PREFW (1). We use PREFW (k) to determine the TRH*
for each k. Figure 10 shows the TRH* as k is varied from 1
to 73. We also evaluate a multi-TREFI attack containing more
than 73 rows. The TRH* increases with k, peaks at k=73, and
reduces thereafter for multi-TREFI pattern, as activations per
row reduces. For pattern, with k=73, the TRH* is 2763.

0 20 40 60 80 100 120 140
Number of Attack Rows (k)

2450
2500
2550
2600
2650
2700
2750

M
in

 T
RH

 (
TR

H
*)

(Multi-TREFI)

Fig. 10. TRH* for pattern-2 as the number of attack lines (k) is varied.

Pattern-3: Multi-Row, Multi-Copy: An attacker could spend
the 73 activations on attacking k rows but activate each row
c times. This attack is less stealthy as each row has c times
higher chance of getting selected in each tREFI. Figure 11
shows the TRH* of MINT as the number of copies (c) per
row is varied from 1 to 73 (the number of rows is adjusted to
fit in one tREFI). With few copies (1-3), the TRH* of pattern-3
remains similar (within 0.5%) to pattern-2, however, it drops
significantly for 4+ copies. Thus, having a large number of
copies within tREFI is not an effective attack.
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Fig. 11. TRH* for pattern-3 as the number of times a given attack row is
activated within the pattern (copies) gets varied from 1 to 73.

Key Takeaway: To develop the most effective direct attack
for MINT, the attacker is forced to have only 1 activation to
any attack row within tREFI to maximize stealth. Under this
constraint, we can use our analysis with pattern-2 (with 73
attack rows) to determine that MINT has TRH* of 2763.

E. Impact of Transitive Attacks

Thus far, we have only been focused on direct attacks, which
aim to directly cause failures in the victim rows of a given
row. Transitive Attacks [43], such as Half-Double [24], offer
another indirect way to cause failure. Figure 12 (a) shows an
example of such an attack, where Row-C receives continuous
activations (using a single-sided attack). MINT will mitigate
the neighbors of Row-C at each REF, causing 8192 victim
refreshes on Row-B and Row-D. The activations from these
mitigative refreshes are silent (not observable by MINT) and
can cause failures in Row-A and Row-E. Thus, such an attack
increases TRH* of MINT to 8192. Note that refreshing two
rows on either side of an aggressor does not mitigate transitive
attacks, as the third row now experiences failures.
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(b) Transitive Mitigation
Fig. 12. (a) Transitive Attacks (B) Extending MINT with Transitive Mitiga-
tion, which performs mitigative refreshes on the victim of victim-rows.

We extend MINT to be secure against transitive attacks by
using transitive mitigation. A transitive mitigation refreshes
the victim of victim-rows. For example, a regular mitigation
for Row-C would refresh Row-B and Row-D, however, a tran-
sitive mitigation would refresh Row-A and Row-E. Ideally, on
each activation, if we do normal mitigations with probability
p, we should do transitive mitigations with probability p2.

Instead of choosing from 73 slots, we modify MINT to se-
lect from 74 slots (the extra slot indicating transitive mitigation
for the recently mitigated row). As there are 74 slots, now
URAND must be modified to select (0-73) positions, where 0
indicates transitive mitigation for the current address in SAR
(if SAN is 0, SAR is preserved at REF, and indicates transitive
mitigation). We note that the transitive mitigation can be
applied recursively [13] (distance is increased if SAN=0 comes
consecutively). As the probability of selection is reduced to
1/74, per pattern-2, the TRH* of MINT is 2800.

F. Impact of Spatial-Correlation Attacks

Our analysis thus far has assumed that the rows in a multi-
row attack (pattern-2) are not spatially correlated. However,
an attacker could try to sandwich a victim-row, between two
attack rows to increase the hammers suffered by the victim
row. This type of spatial correlation attack is present in the
double-sided pattern, as shown in Figure 13(a), where victim
Row-C is between two aggressor rows, Row-B and Row-D.

Such a pattern is challenging for prior counter-based track-
ers, that determine the selection decision based on counter-
values. If both aggressor rows perform T activations before
either one gets selected for a mitigation, then the victim-row
is subjected to 2T activations. Thus, the effective threshold
tolerated by counter-based schemes get doubled due to such a
pattern. MINT is immune against such spatial patterns.
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Fig. 13. Spatial correlation attacks (a) Double-sided attack on Row-C (b)
Mitigation for B refreshes A and C (c) Mitigation for D refreshes C and E.
Thus, C has as many chances of mitigations as summed over B and D.

MINT performs probabilistic selection. If Row-B is se-
lected, then Row-A and Row-C get refreshed, as shown in
Figure 13(b). If Row-D is selected, then Row-C and Row-
E get refreshed, as shown in Figure 13(c). Thus, Row-C has
as many chances for refresh as offered by both Row-B and
Row-D. For example, if Row-B and Row-D each had 2800
activations (TRH*), then Row-C gets 5600 chances of refresh.

The TRH* of MINT indicates how many chances of mit-
igation can be escaped successfully. Thus, the total number
of activations over Row-B and Row-D cannot exceed 2800,
so, on average, each of the two rows can have up-to 1400
activations. This analysis also helps us bound the Minimum
Tolerated TRH (TRH-D*) for a double-sided pattern. Note that,
device characterization studies typically report TRH in terms
of per-row activations for a double-sided pattern, so they report
TRH-D*. The TRH-D* of MINT is 1400.

G. Comparison with Prior Trackers

We compare MINT with four designs, two counter-based
(PRCT and Mithril [20]) and three probabilistic (PARFM [20],
PrIDE [13], and InDRAM-PARA). InDRAM-PARA is our
adaptation of PARA [23] to the in-DRAM setting, using
a single-entry tracker, to highlight the differences between
MINT and an alternative probabilistic selection. We compare
these designs in terms of TRH-D*, the number of tracking
entries, and the impact of Transitive Attacks.

PRCT: This is an idealized past-centric scheme that maintains
a counter for each row. As all activations (including from
victim refresh) increment the counter, PRCT is immune to
transitive attacks. To determine TRH-D* of PRCT, we use
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the Feinting Attack [29], and start by spreading the available
activations across 8192 aggressor rows. At each REF, the row
with the highest counter value gets mitigated and removed
from the list of aggressor rows. In the second-to-last round
(8191), all the activations within tREFI are focused on the
last two remaining aggressor rows. To determine, TRH-D*, we
assume that the victim is placed in between the two aggressor
rows. The TRH-D* of PRCT is 623.

Mithril: This counter-based past-centric design tracks only a
subset of rows, and uses a proactive mitigation (i.e. it selects
the row with the highest counter value for mitigation at each
REF). As activations from mitigative refreshes increment the
counter, this design is immune to transitive attacks. We use
the Theorem-1 provided in the Mithril paper [20] to derive the
number of counters required for a particular TRH-D*. Mithril
requires at-least 677 entries to get TRH-D* of 1400.

PARFM: This is a past-centric probabilistic design that buffers
all the activations during the tREFI window, and on reaching
REF, it randomly selects one of the buffered entries to get
mitigated, and invalidates all the buffered entries to free
up space for the next tREFI. As there could be up-to 73
activations within the tREFI interval, this design requires
an overhead of 73 entries per bank. As only the demand
activations are used for selection, this design is vulnerable
to transitive attacks. The TRH-D* of PARFM is 4096.

InDRAM-PARA: This is a current-centric probabilistic de-
sign. On each activation, a row is selected with probability
p (p=1/73 for our study) and stored in a single-entry tracker.
This row is mitigated only if it can survive until REF. We
derive the TRH-D* of the InDRAM-PARA to be 3732. As
the TRH* of this design is relatively high, direct attacks allow
more unmitigated activations on a given row than transitive
attacks, therefore, this design is immune to transitive attacks.

PrIDE [13]: This is a recently proposed probabilistic tracker.
On each activation, PrIDE selects a row with probability p
(e.g. p=1/73) and stores it in a four-entry FIFO buffer. At REF,
the oldest entry in the FIFO is mitigated. PrIDE improves the
survival probability but suffers from Tardiness. We derive the
TRH-D* of the PrIDE to be 1750.

Table III compares the five trackers with MINT in terms of
type, TRH-D*, entries, and vulnerability to Transitive Attacks.
MINT has a TRH* similar to a 677-entry Mithril tracker, and
has 2.25x the TRH* of the idealized PRCT design. This bound
with PRCT becomes within 2x under refresh postponement,
which we discuss next.

TABLE III
COMPARISON OF IN-DRAM TRACKERS

Design Type TRH-D* Entries Transitive
(Centric) (Threshold) (Per-Bank) Attacks

PRCT Past 623 128K Immune
Mithril Past 1400 677 Immune
PARFM Past 4096 73 Vulnerable

InDRAM-PARA Current 3732 1 Immune
PrIDE Current 1750 4 Immune
MINT Future 1400 1 Immune

VI. HANDLING REFRESH POSTPONEMENT

Thus far, we assumed that a refresh is performed at every
tREFI. However, in reality, DDR5 specifications allow the
postponement of up-to 4 refresh operations. A maximum of
5 refreshes can be batched and performed together, as shown
in Figure 14. Refresh postponement increases the number of
activations between refresh from 73 to 365.

73 73 73 73 73
Ref-1 Ref-2 Ref-3 Ref-4 Ref-5

73x5 = 365 ACTs
Refs 1-5

Fig. 14. Refresh postponement in DDR5 (top) Timely refresh (bottom)
Batches of 5 refresh allowing up-to 365 ACTs between refresh.

A. Impact of Refresh Postponement on Optimal Trackers

Refresh postponement can allow the attacker to cause more
activations on the aggressor row (selected for mitigation)
during the period of refresh postponement. The impact of
refresh postponement is easier to understand for counter-based
trackers [29], as the threshold gets revised by an amount equal
to the additional ACTs due to refresh postponement (so 73x4
= 292 in our case, split equally on either side of a double-
sided attack). Thus, the TRH-D* of PRCT increases from 623
to 769. Similarly, the number of entries required by Mithril to
achieve TRH-D* of 1400 increases from 677 to 827.

B. Impact of Refresh Postponement on Low-Cost Trackers

To the best of our knowledge, no prior work has studied the
impact of refresh postponement on low-cost trackers. Refresh
postponement is especially problematic for low-cost trackers
as they track only a few entries, and are tailored for a given
rate of mitigation (e.g. one per tREFI).

If the maximum number of activations within tREFI is M
(73 in our case), then refresh postponement can make all
activations past M invisible to the tracking mechanism. This is
the case for both MINT and PARFM, as they are designed for
only M activations within tREFI and a refresh thereafter. With
refresh postponement, the attacker can perform activations on
decoy rows during the first M activations, and then determin-
istically perform 4M activations on the attack row (without
receiving any mitigations). Thus, refresh postponement can
allow the attacker to deterministically perform 478K (!) acti-
vations on a row every 32ms using MINT and PARFM.

For the InDRAM-PARA, the extra activations during the
period of refresh postponement can cause the tracked entry to
get dislodged easily. If the attacker places the attack row in
the first position, then the probability of survival after another
364 activations is 0.66%. Refresh postponement increases the
TRH-D* of the InDRAM-PARA from 3.7K to 21.3 K.

Thus, refresh postponement demolishes existing low-cost
trackers. We propose a generalized design that makes low-cost
trackers compatible with refresh postponement.
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C. Practical Solution: Delayed Mitigation Queue (DMQ)

As refresh postponement is in DDR5 standards, all trackers
must support refresh postponement. To achieve this, we pro-
pose a general solution, Delayed-Mitigation Queue (DMQ).
Figure 15 shows the overview of our design. We consider
a generic low-cost tracker (e.g. MINT, PARFM, InDRAM-
PARA etc.). DMQ requires the tracker to count the number of
activations (NumACTs) since the last refresh (MINT already
does this with CAN, but other trackers may need an additional
register). If NumACTs exceeds the maximum number of
activations in tREFI (e.g. 73), it is reset to 1, and the tracker
performs a pseudo-mitigation. During pseudo-mitigation, the
tracker provides the address of the selected aggressor row
(e.g. stored in SAR for MINT and InDRAM-PARA), which
is inserted into a FIFO buffer called the DMQ. The DMQ has
four entries (as up-to four refreshes can be postponed). On
REF, if the DMQ contains at-least one valid entry, the oldest
entry from the DMQ is mitigated. Else, the tracker selects and
mitigates normally, similar to no refresh postponement.

Low-Cost
Tracker

NumACTs
>M?

D0
D1
D2
D3Selected

Row-Addr

Mitigate Oldest

DMQ 

REF 

Fig. 15. Design of Delayed-Mitigation Queue (DMQ). DMQ makes low-cost
in-DRAM trackers compliant with refresh postponement.

D. Bounding the Impact of DMQ on Tolerable TRH

As DMQ is a FIFO, the maximum number of activations
for which the row selected by the tracker will get delayed in
receiving a mitigation while waiting in the DMQ is 292 (73x4).
At the worst-case, the pattern may be accessing the same row
continuously, in which case the row may receive up-to 292
activations while in the DMQ, so the TRH* of the tracker
would increase by 292, or equivalently, the TRH-D* would
increase by 146. Thus, DMQ makes the impact of refresh
postponement on low-cost trackers, similar to counter-based
trackers. Table IV shows the impact of refresh postponement
(with and without DMQ). As MINT forces a pattern that has a
single activation of a row within tREFI, delaying the mitigation
by four tREFI causes only four more activations, so the TRH-
D* of MINT increases by 4 to 1404 (it can be increased to
1482* using an adaptive attack, shown in Appendix B). The
TRH-D* of MINT is 1482, thus (outperforming 677-entry
Mithril and 1.9x of PRCT).

TABLE IV
IMPACT OF REFRESH POSTPONEMENT AND DMQ ON TRACKERS

Design Entries TRH-D* TRH-D* TRH-D*
(Bank) (NoPostpone) (No DMQ) (with DMQ)

PRCT 128K 623 769 769
Mithril 677 1400 1546 1546
PARFM 73 4096 478K 4242

InDRAM-PARA 1 3732 21.3K 3650
PrIDE 4 1750 6500 1900
MINT 1 1400 478K 1404/1482*

VII. SCALING TO LOWER THRESHOLDS WITH RFM

The TRH* of MINT can be reduced by increasing the
mitigation-rate. DDR5 specifications include Refresh Manage-
ment (RFM) that enables the memory controller to provide
more time to the DRAM chip to perform mitigation. RFM
enables the memory controller to issue additional mitigations
(RFM commands) to the DRAM when the activations per
bank crosses a threshold. The memory controller maintains a
Rolling Accumulation of ACTs (RAA) counter [20]) per bank.
When any RAA counter reaches a given threshold (RAAMMT),
the memory controller issues an RFM and reduces the RAA
counters by a given amount (RAAIMT). Furthermore, RAA
counter is reduced by a given amount (e.g. RAAIMT) on REF.

We co-design MINT with RFM to scale to lower thresh-
olds. We evaluate two variations: with a RAAIMT of 32
(MINT+RFM32) and 16 (MINT+RFM16). As the number of
activations within the mitigation period is now 32 or 16, we
modify MINT to select URAND(0,32) or URAND(0,16).

Table V shows the TRH-D* for MINT and MINT+RFM.
We evaluate various mitigation rates, including 0.5x (one
mitigation every two tREFI), 1x (one mitigation every tREFI),
RFM32 (∼2x mitigation rate), and RFM16 (∼4x mitigation
rate). We use RAAMMT of 5 times RAAIMT, thus, our solu-
tion must allow RFM postponing by up-to 4x. We implement
MINT+RFM with DMQ and report the threshold under an
adaptive attack. MINT+RFM16 has a TRH-D* of 356.

TABLE V
THE TRH-D* OF MINT AND MINT+RFM (INCLUDES DMQ)

Scheme Relative Mitigation Rate TRH-D*
MINT 0.5x (one per two tREFI) 2.70K
MINT 1x (one per tREFI) 1.48K

MINT+RFM32 2x (approx two per tREFI) 689
MINT+RFM16 4x (approx four per tREFI) 356

VIII. RESULTS

A. Impact on Performance

We model MINT and MINT+RFM in a detailed memory
system simulator (memsim [2]). Table VI shows our config-
uration. We model a 8-core out-of-order CPU with DDR5,
using Micron Datasheet [31]. We evaluate our design with
22 SPEC2017 [42], 6 GAP [35] and 4 stream workloads. All
workloads are run in 8-core rate mode. We use a representative
slice of 100 million instructions. Per DDR5 specifications, we
assume tDRFMsb is equal to tRFC (240ns) while tRFMsb is
equal to half the time of tRFC (205ns). We assume that both
RFM and DRFM stall the same bank in all bankgroups (so,
for each RFM/DRFM, 8 banks get stalled).

TABLE VI
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 8 core, 4GHz, 4-wide, 256-ROB
Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory specs 32 GB, DDR5
tRCD-tCL-tRP -tRC 12-12-32-48 ns

Banks x Ranks x Sub-Channels 32×1×2
Rows 128K rows, 4KB row buffer
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Fig. 16. Normalized performance. MINT incurs zero slowdown. The bar labeled Gmean represents the Geometric mean over all the 32 workloads. MINT +
RFM32 and MINT + RFM16 incur a 0.2% and 2. 5% slowdown, respectively.

Figure 16 shows the relative performance of MINT and
MINT+RFM, normalized to the DDR5 baseline. MINT incurs
zero slowdown, as the mitigations required for MINT are
performed within the tRFC period as mentioned in DDR5
specifications. MINT+RFM32 incurs negligible slowdown and
MINT+RFM16 incurs an average slowdown of 2.5%. Thus,
MINT and MINT+RFM provide a scalable and low overhead
mitigation for Rowhammer, even at low thresholds.

B. Impact of Target Time-to-Fail on Threshold

As MINT is a probabilistic design; we deem it to be
secure if the time-to-fail is greater than the Target Time-to-
Fail (Target-TTF). We used a default Target-TTF of 10,000
years per bank as it is similar to per-bank failure-rate similar
from naturally occurring errors [4]. Table VII shows TRH-D*
of MINT for varying Target-TTF (per-bank) and MTTF for our
system (64 banks, but only 22 can be used concurrently due to
tFAW). MINT provides several decades/centuries of protection
even under continuous attacks on all available banks.

TABLE VII
THE TRH-D* OF MINT FOR VARIOUS TARGET-TTF

Target-TTF MTTF TRH-D* TRH-D* TRH-D*
(Bank) (System) MINT (+RFM32) (+RFM16)
1K years 45 years 1.40K 651 336

10K years 450 years 1.48K 689 356
100K years 4.5K years 1.57K 726 375

1Million years 45K years 1.64K 763 395

C. Storage Overheads

MINT requires a CAN (7-bits), SAN (7-bits) and SAR (18
bits), for a total of 32 bits (4 bytes). The DMQ requires 4
entries (19 bits, including one for transitive-mitigation) for a
total of 9.5 bytes. Thus, MINT+DMQ requires less than 15
bytes per bank. It also requires an in-DRAM pseudo-random
number generator, similar to DSAC [12] and PAT [22].

D. Energy Overheads

The energy overheads of MINT can be attributed to three
sources (1) the random number generator (RNG) that is
consulted at each tREFI to derive the SAN, (2) the additional
structure of DMQ, and (3) the extra activations to perform
mitigative refreshes. Our energy overheads include the energy
incurred in all three sources.

MINT uses a 7-bit TRNG [17], [49], which consumes 90
micro-watts of static power and 200 micro-watts of dynamic
power. The total power of the TRNG (290 micro-watts) is
three orders of magnitude lower than the DRAM power.

We use CACTI-6.5 to estimate the DMQ power. DMQ
consumes static power of 48 micro-watts and dynamic power
of 38 micro-watts. The total power of DMQ (86 microwatts)
is three orders of magnitude lower than the DRAM power.

Table VIII shows the relative memory energy consumption
(including DMQ and RNG) of MINT and MINT+RFM nor-
malized to the baseline. To determine DRAM energy, we use
the Micron power calculator [32]. We split the DRAM energy
into three parts: ACT+RD/WR, Background, and Refresh. The
mitigations due to MINT increase the refresh energy. MINT
increases the DRAM energy by 0.8%, and when combined
with RFM it increases the average energy by 2% or 4.4%.

TABLE VIII
MEMORY ENERGY OVERHEADS OF MINT AND MINT+RFM
Config ACT+RD/WR Background Refresh Total

Base (No Mitig) 66.3% 22.3% 11.3% 100%
MINT 66.3% 22.3% 12.1% 100.8%

MINT+RFM32 66.3% 22.4% 13.3% 102.0%
MINT+RFM16 66.3% 22.9% 15.2% 104.4%

E. Comparison with Memory-Controller-Based PARA

We compare MINT with PARA implemented on the MC-
side (MC-PARA). Fig 17 shows the average slowdown of
MC-PARA and MINT tuned for similar TRH*. MINT can
do mitigations transparently (within REF) and incur RFM
overheads only when ACT count exceeds RFMTH. MC-PARA
relies on DRFM, which means all mitigations block the bank
from service. On average, MC-PARA incurs a slowdown of
1.8%-8%, whereas MINT incurs a slowdown of 0%-2.5%.

NoRFM RFM-32 RFM-16 p=1/72 p=1/32 p=1/160
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Fig. 17. Performance of MINT and MC-PARA (DRFM). DRFM-based
implementation incurs higher performance overheads.
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IX. RELATED WORK

Per-Row-Activation-Counting (PRAC): Concurrent to our
submission, JEDEC announced [1] an update to DDR5 speci-
fications with PRAC [15]. PRAC extends the DRAM array to
have a counter and uses that counter to track activations. The
timing of memory operations (e.g. tRC) is changed to perform
a read-modify-write of the counter for each activation. While
PRAC is a principled defense for Rowhammer, we note that
PRAC is an optional feature and DRAM manufacturers are not
required to support PRAC. A recent Hynix [22] design showed
that the area overhead of supporting per-row counters is
approximately 9%. Furthermore, PRAC specifications change
the tRC timings from the current 46ns-48ns to 52ns (almost
10% higher). DRAM industry is extremely cost-sensitive. If
there is a secure low-cost method to mitigate Rowhammer,
then the memory companies can avoid the significant area,
power, and timing overheads of PRAC, and choose the low-
cost alternative. MINT offers such an alternative. Our analysis
with feinting-style attacks shows that the threshold of MINT
is within 2x of Per-Row-Counter-Table (PRCT).

Other One-Counter-Per-Row Designs: CRA [18] and Hy-
dra [34] keep the counters in DRAM and use caches or filters
to reduce the DRAM lookups for counters. However, they can
incur large slowdowns for the worst-case patterns.

Efficient-Counters: Several proposals reduce the SRAM over-
head of aggressor-row tracking. Table IX compares the per-
bank SRAM overheads of Graphene [33]. MINT has signifi-
cantly lower SRAM overheads, especially at low TRH.

TABLE IX
PER-BANK SRAM OVERHEAD OF TRACKERS (PER-RANK WILL BE 32X)

Name Device TRH-D=3K Device TRH-D=300
Graphene 56.5 KB 565 KB

MINT+DMQ 15 bytes 15 bytes

Secure Low-Cost Tracker: Our recent work proposes
PrIDE [13], a secure low-cost in-DRAM tracker. The
InDRAM-PARA design we discuss in this paper is equivalent
to single-entry PrIDE. PrIDE uses a 4-entry FIFO to reduce the
loss probability (from 63% to 10%) but suffers from Tardiness.
In the PrIDE terminology, MINT has zero loss-probability and
zero Tardiness (pattern-2). The TRH-D* of PrIDE is 1750
(25% higher than MINT). Refresh postponement causes the
TRH-D* of PrIDE to increase to 6.5K. PrIDE with DMQ has
a TRH-D* of 1900 (28% higher than MINT+DMQ).

Mitigating-Actions: For MINT, we use victim refresh for
mitigation. RRS [36], AQUA [40], SRS [46], SHADOW [45]
perform mitigation with row migration, whereas, Blockham-
mer [47] uses rate limits. REGA [30] changes the DRAM cir-
cuitry to provide mitigating refresh on each demand activation.
HiRA [48] changes the interface to allow multiple activations
per bank. MINT avoids changes to DRAM array and interface.

ECC-Codes: SafeGuard [7], CSI-RH [16], PT-Guard [39], and
Cube [21] use ECC codes to tolerate Rowhammer failures,
however, uncorrectable failures can still cause data loss.

X. CONCLUSION

Current in-DRAM trackers for Rowhammer mitigation are
either insecure or require prohibitively-high cost. This paper
develops Minimalist In-DRAM Tracker (MINT) to provide
secure Rowhammer mitigation with a single entry. The key
insight that enables MINT is that instead of selecting the
aggressor row based on the past or the current, MINT selects
one in the future (a random row in the upcoming interval). We
also study the compatibility of low-cost trackers with refresh
postponement, and propose Delayed Mitigation Queue (DMQ)
as a generalized solution. We show that MINT can securely
protect devices with a double-sided TRH of 1482 and as low
as 356 when combined with RFM. The storage, performance,
and energy overheads of MINT are negligible.
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APPENDIX A: IMPACT OF MAXACT

One of the key parameters that determines the efficacy of in-
DRAM trackers is the mitigation rate. Our default mitigation
rate is 1 aggressor row per tREFI. Given our default timing
parameters, we can have a maximum activations (MaxACT)
of 73 per tREFI. In this section, we vary MaxACT.

JEDEC specifies a range of memory timings and memory
companies decide which specifications to support. For exam-
ple, for DDR5, JEDEC specifies 11 data transfer rates (DDR5-
3200 to DDR5-7200, once every 400), and for each rate, they
specify four speed-bins (A, AN, B, BN). Across all these 44
specifications, the minimum tRC is 46ns and maximum tRC
is 49.5ns (52ns for revised specs with PRAC). For DDR5,
tREFW=32ms, and tRFC=350ns or 410ns. Thus, MaxACT can
range from 67.2 to 77.2 for the entire DDR5 specs.

Figure 18 shows the TRH-D* supported by MINT and
InDRAM-PARA as the MaxACT is varied from 65 to 80.
The viable range of MaxACT for the DDR5 specifications is
highlighted in green. The relative difference between MINT
and InDRAM-PARA remains at 2.7x throughout the DDR5
range (and even outside). Thus, the advantage MINT is not
limited to a specific choice of MaxACT.

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
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Fig. 18. Impact of varying the maximum number of activations (MaxACT)
within tREFI for InDRAM-PARA and MINT. MINT continues to have 2.7x
lower TRH-D* than InDRAM-PARA across the entire range of MaxACT.
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APPENDIX B: ADAPTIVE ATTACKS ON MINT+DMQ
The Pattern: The best attack for MINT is to activate a given
aggressor row within tREFI only once (to evade selection). The
best attack for DMQ is to activate the same row repeatedly, as
it allows more activations on the selected row while waiting in
the DMQ for mitigation. Therefore, using a single pattern is
not ideal for the MINT+DMQ. We develop an Adaptive Attack
(ADA) on DMQ that changes the pattern from what is optimal
for MINT (pattern-2) to what is optimal for DMQ (repeated
activations) at a predefined morphing-point (MP). Figure 19
shows an overview of ADA.

(ABC)MP
MINT

MP

A365 B365 C365

Attack Pattern for DMQ 

(Morphing-Point)

(ABC)MP
MINT

Fig. 19. ADA morphs the pattern from MINT to DMQ at morphing-point.
We show 3 rows for simplicity, MINT pattern has 73 lines.

As refresh postponement can allow 365 activations on a
given row, this switching can allow ADA to cause 365 activa-
tions on an aggressor row (without any intervening mitigation),
however, after ADA, this row is guaranteed to get mitigated.
Thus, if the row had A activations at the morphing-point, then
ADA can cause the row to have A+ 365 activations.

The Model for Threshold: For ADA to be effective it must
find a row with at-least (TRH* - 365) activations, otherwise
the row is guaranteed to get mitigated before reaching TRH*.
Similarly, if the row already has TRH*, it fails without
requiring ADA. As the attacker does not know the activation-
counts of a given row within the given tREFW window, the
key decision for ADA is to set the morphing-point (in terms
of tREFI), with the useful range from (TRH* - 365) to (8192
- 365). To compute the probability of finding a given row
with a given activation count (A) at a given tREFI interval,
we use a Markov-Chain, as shown in Figure 20. For pattern-2,
the row can have an activation-count from 1 to 8192 (states
above TRH* indicate failure with MINT). We determine the
probability of finding a row with A activations and then
increase it by 365 due to ADA. We use these probabilities
to compute the PREFW , MTTF, and TRH*.

0 1
(1-p)

2
(1-p)

8191 8192
(1-p)

p p p 1 (REF)
T

TRH*

p

8191 8192

Fig. 20. Markov-Chain for activation count of a row. Each state denotes the
activation counts since the last mitigation or refresh. The parameter p denotes
the probability of mitigation. Red/Green denotes states with/without an error.

The Impact: Figure 21 shows the TRH* of ADA as the
morphing-point is varied from 500 to 8000. We evaluate
both single-sided and double-sided versions. For single-sided
version, ADA starts to become effective only after MP of 2400
(before this the TRH* remains 2763, same as without ADA),
and provides the highest TRH* of 2899 at MP between 2533-
3730, beyond this the TRH* drops to 2847. The reason for this

behavior is a smaller MP allows for the attack to be repeated
multiple times within the same tREFW. For the double-sided
pattern, the attack starts to become effective after MP of 1200,
and provides the highest TRH-D* of 1282 between MP of
1299 and 1456, after which TRH-D* reduces to 1474. The
earlier success point for double-sided attack is because TRH-
D* (without ADA) is much lower than TRH* (without ADA).
Overall, this analysis shows that under adaptive attacks, TRH-
D* of MINT+DMQ is 1482.
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Fig. 21. Threshold of MINT+DMQ with ADA, as the Morphing-Point (MP)
is varied. ADA has TRH* of 2899 and TRH-D* of 1482. The double-sided
attack has shorter period for DMQ attack and an earlier MP.

APPENDIX C: TOLERATING ROW-PRESS WITH MINT

Row-Press [28] is a new vulnerability that arises when a row
is kept open for a long time. The charge in the nearby rows
continues to slowly leak through the bit lines. Each round of
Row-Press incurs one activation and keeps the row open for a
period of tON (tON can be between tRAS and 5*tREFI). Due
to the extra charge leaked during tON, Row-Press can cause
bit flips in much fewer activations than TRH.

Our concurrent work, ImPress [38], enables in-DRAM
trackers to mitigate Row-Press without affecting the tolerated
TRH. The key idea is to convert the row open time into
an equivalent number of activations (EACT) for Rowhammer
mitigation. Thus, rows that are kept open for a longer time
have higher EACT and therefore a higher rate of mitigation.
EACT is given by Equations 9.

EACT = (tON + tPRE)/tRC (9)

ImPress requires a timer to track tON. The division (with
tRC) is implemented with a shift operation. EACT can have
up to 7-bits of fractional part. To tolerate Row-Press with
MINT, we must change the 7-bit CAN register to a fixed-
point register (7+7=14 bits). For each activation, CAN is
incremented by an amount equal to EACT. When the value
of CAN crosses SAN, the row causing the activation is stored
in SAR. MINT combined with ImPress can tolerate Row-Press
without affecting the TRH*. With ImPress, the total storage
overhead increases from 15 to 17 bytes per bank.

Thus, MINT when combined with ImPress offers a practical
solution to tolerate both Rowhammer and Row-Press with a
minimalist hardware solutions that incurs negligible storage
overhead and negligible performance overhead.
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Fig. 22. Performance Impact of MINT+RFM16 using two simulators (a) DRAMSim3 (b) Memsim. The bar labeled Gmean represents the Geometric mean
over all the 32 workloads. Both setups show an average slowdown of 2.4%.

APPENDIX D: VALIDATION WITH DRAMSIM3

We use our memory system simulator memsim [2] for
performance evaluations. Memsim models the memory system
in detail (e.g. banks, channels, queues, refresh, mapping, and
scheduling) with key timing parameters. It is designed for
speed and ease of use. We validate memsim with a cycle-
accurate memory system simulator, DRAMSim3 [27]. Fig-
ure 22 shows the slowdown of MINT+RFM16 with memsim
and DRAMSim3. We observe a good correlation between the
two simulators (the average difference is 0.9%). Both memsim
and DRAMSim3 show an average slowdown of 2.4%.

APPENDIX-E: ARTIFACT

A. Abstract

This artifact presents the code for MINT, our Rowhammer
mitigation. We provide the C++ code for security analysis,
determining the minimum Rowhammer threshold (TRH*) pro-
tected by MINT and other related schemes.

We provide scripts and code for security analysis and
recreate the key results – Figure 3, Figure 5, Figure 6,
Figure 10 Figure 11, Figure 18, and Figure 21. We
also show key results for prior schemes shown in Ta-
ble III. We also provide (optional) artifacts to generate
performance results as shown in Figure 16. The artifact
is available at: https://doi.org/10.5281/zenodo.13363054. The
latest version of the Memsim simulator is available at
https://github.com/mqureshi4/memsim

B. Artifact check-list (meta-information)
• Algorithm: MINT mitigation.
• Compilation: Tested with g++ (Apple clang-1500.3.9.4)
• Run-time environment: Tested on Mac OS Sonoma 14.5.
• Hardware: The artifact can be run on a laptop (we used the

Macbook Air M2) or a Linux machine.
• Execution: Analytical models and Performance Models.
• Metrics: TRH* (single-sided and double-sided)
• Output: Recreating security results: Figure 3, Figure 5, Fig-

ure 6, Figure 10 Figure 11, Figure 18, and Figure 21.
• Experiments: Instructions to run the analysis and plot graphs

are available in the README file.
• How much disk space required (approximately)?: 1 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 5 minutes
• How much time is needed to complete experiments (approx-

imately)?: 5 minutes (security) + 2 hours (performance)

• Publicly available?: Yes.
• Workflow framework used?: Analytical Models.
• Archived (provide DOI)?: Yes, the DOI for the artifact is

https://doi.org/10.5281/zenodo.13363054.

C. Description

1) How to access: The code and instructions are at:
https://zenodo.org/records/13731504.

2) Hardware dependencies: Security evaluations can be run
on most generic Linux machines or a laptop.

3) Software dependencies: g++ is used for compilation and
Python3 with matplotlib and numpy to plot graphs.

D. Experiment workflow

The README provides detailed instructions to reproduce
the results of the paper:

• Run the ./gengraphs.sh script to perform the security
analysis and display the corresponding figures.

E. Evaluation and expected results

The artifact provides the scripts to run both the security
evaluations and display the graphs. The relevant commands
are provided in the artifact README. The expected results
from this artifact are to recreate the key security results –
Figure 3, Figure 5, Figure 6, Figure 10 Figure 11, Figure 18,
and Figure 21. We also show key results for the previous
schemes shown in Table III.

F. Experiment customization

Scripts are self-contained and do not need customization.

G. Optional: Performance Evaluation

MINT itself does not incur any performance overheads, as
the mitigation happens under REF. MINT can optionally be
combined with RFM to scale to a lower threshold. However,
the performance overhead of RFM is agnostic to the under-
lying implementation of the in-DRAM tracker and is purely
dependent on activation counts and RFM thresholds.

We also provide optional artifacts to reproduce the
results for Fig. 16. To run these experiments, go to
memsim/SCRIPTS and type ./runall.sh. These exper-
iments may take 2-3 hours (on an 8-core laptop). Once the
experiments are completed, the script should automatically
generate Figure 16. For any glitches, see the error messages.
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