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Abstract—DRAM cells are susceptible to Data-Disturbance Er-
rors (DDE), which can be exploited by an attacker to compromise
system security. Rowhammer is a well-known DDE vulnerability
that occurs when a row is repeatedly activated. Rowhammer
can be mitigated by tracking aggressor rows inside DRAM (in-
DRAM) or at the Memory Controller (MC). Row-Press (RP) is a
new DDE vulnerability that occurs when a row is kept open for
a long time. RP significantly reduces the number of activations
required to induce an error, thus breaking existing RH solutions.

Prior work on Explicit Row-Press mitigation, ExPress, requires
the memory controller to limit the maximum row-open-time, and
redesign existing Rowhammer solutions with reduced Rowham-
mer threshold. Unfortunately, ExPress incurs significant perfor-
mance and storage overheads, and being a memory controller-
based solution, it is incompatible with in-DRAM trackers.

In this paper, we propose Implicit Row-Press mitigation (Im-
Press), which does not restrict row-open-time, is compatible with
memory controller-based and in-DRAM solutions and does not
reduce the tolerated Rowhammer threshold. ImPress treats a
row open for a specified time as equivalent to an activation. We
design ImPress by developing a Unified Charge-Loss Model, which
combines the net effect of both Rowhammer and Row-Press for
arbitrary patterns. We analyze both controller-based (Graphene
and PARA) and in-DRAM trackers (Mithril and MINT). We
show that ImPress makes Rowhammer solutions resilient to Row-
Press transparently without affecting the Rowhammer threshold.

I. INTRODUCTION

Relentless scaling over the last four decades has increased
the capacity of DRAM chips from a few megabits to several
tens of gigabits. As DRAM cells get smaller, they become
prone to inter-cell interference, where the activity in one
cell can disturb the data in another cell, leading to Data-
Disturbance Errors (DDE). DDEs are not only a reliability
concern, but also a serious security threat, as attackers can
exploit DDEs to compromise system security [9, 40].

Rowhammer: The most well-known DDE vulnerability in
DRAM is Rowhammer (RH) [22]. Rowhammer occurs when
an aggressor row is activated a large number of times, which
causes bit-flips in the neighboring victim rows. Several studies
[2, 4, 6, 8, 9, 40, 43] have shown that Rowhammer can be
exploited to compromise security. For example, an attacker
can flip bits in page tables to escalate privilege [40], flip bits
in instruction opcode to bypass authentication [35], or analyze
flipped bits to infer the data of nearby pages [23].

The number of activations (ACTs) to the aggressor row
required to induce a bit-flip is called the Rowhammer Thresh-
old (TRH). The latest publicly available characterization data
reports a TRH of 4.8K [18]. Typical hardware-based defenses
for Rowhammer rely on a tracking mechanism [17, 17, 19,

22, 28, 32, 34, 42] to identify aggressors and refresh the
victim rows [10]. The tracking can be either at the Memory-
Controller (MC) or within the DRAM (in-DRAM). Solutions
for mitigating RH are designed for a specific TRH, which
assumes DRAM will not incur bit-flips if the activation count
is below the specified TRH. These solutions can be broken if a
vulnerability causes bit flips with fewer than TRH activations.

Row-Press: A recent paper [26] discloses a new DDE vul-
nerability, Row-Press (RP), which occurs when a row is kept
open for a long time. While the row is open, the cells of
the neighboring rows slowly leak charge on the bit-lines. The
cumulative charge loss increases with time. Therefore, a Row-
Press pattern keeps the row open for as long as possible. The
row may eventually close due to a row conflict or refresh
operation. Such a Row-Press attack pattern is repeated until
the charge on the neighboring cell is depleted enough to cause
a flip. Figure 1 (a) compares the pattern of RH and RP.

Impact of Row-Press: The efficacy of Row-Press depends on
how long the row is kept open. Each round incurs an activation
of the given row. Luo et al. [26] provide a detailed character-
ization of Row-Press and show that the number of activation
rounds required to succeed is 18x to 160x lower compared to
the number of activations required by a standalone RH attack.
If the row is kept open for 30ms1, then a single round of
Row-Press attack may be enough to flip a bit.

Figure 1 (b) captures the impact of Row-Press on TRH.
RP reduces the activations required to cause a bit-flip to much
lower than TRH [26]. Thus, RP breaks RH mitigation designed
to tolerate a threshold of TRH, as such solutions inherently
assume that no bit-flip occurs if the row gets fewer than TRH
activations. Therefore, RP is a serious security vulnerability.

Explicit Row-Press Management: Luo et al. [26] also
proposed a design to tolerate Row-Press attacks, which forces
the Memory Controller (MC) to limit the amount of time a row
can be kept open to Maximum Row Open time (tMRO). For
example, let TRH denote the threshold for the standalone RH
attack. The number of activations, T∗, required for Row-Press
to flip bits is characterized, with the maximum aggressor open
time (tON) being limited to tMRO. The proposal redesigns
the RH mitigation to operate at a lower threshold, T*, instead
of TRH. We term this design Explicit Row-Press (ExPress)
Mitigation. Figure 1(c) provides an overview of ExPress.

1Millisecond-scale Row-Press is not possible as per DDR specifications,
which require performing refresh within a few tens of microseconds.
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Fig. 1. Towards practical Row-Press solution: (a) Attack pattern for Rowhammer and Row-Press (b) Impact of Row-Press on the Rowhammer Threshold (c)
Explicit Row-Press (ExPress) [26] mitigation, which limits the aggressor row-open time (tON) to tMRO, reduces the tolerated RH threshold (d) Our proposal,
Implicit Row-Press (ImPress) mitigation, treats a row-open for tRC as equivalent to an activation (ACT) for RH-mitigation, retains the same RH threshold.

Pitfalls of ExPress: The key shortcoming of ExPress is that it
reduces the tolerated threshold from TRH to T*. Additionally,
ExPress suffers from the following three problems:

(1) High performance overheads: Early row closure reduces
the row buffer hits for workloads with good spatial locality.
Furthermore, tuning the RH solution to a lower threshold (T*)
increases the rate of mitigation and the associated penalty.

(2) High storage overheads: If the tracking mechanism is
based on counters, the number of tracking entries increases
due to the reduction in the threshold from TRH to T*.

(3) Incompatibility with in-DRAM Trackers: ExPress is a
memory controller-based solution, as it must limit tON to
tMRO. Therefore, it is incompatible with in-DRAM Rowham-
mer schemes that are unaware of the tMRO value unless the
JEDEC specifications are revised to standardize tMRO.

Our Goal: The goal of our paper is a Row-Press solution
which (i) does not place any limit on row-open time, (ii)
does not affect the TRH tolerated by a Rowhammer solution,
(iii) incurs low performance and storage overheads, and (iv) is
applicable to both memory controller-based and in-DRAM RH
solutions, without requiring changes to JEDEC specifications.

Our Insight: Secure RH-mitigation schemes are designed
to handle the case when an activation occurs at every tRC
(row-cycle time). If a row is open for a particular time
period (say, tRC), then we treat it as equivalent to causing
an activation, and the row participates in the RH mitigation.
Doing so converts the Row-Press attack into an equivalent
Rowhammer attack and lets the RH solution transparently
handle RP without limiting the row open time.

Our Solution: We propose Implicit Row-Press (ImPress)
Mitigation, as shown in Figure 1(d). To drive the design of
ImPress, we first develop a Unified Charge-Leakage Model
that combines the effect of both Rowhammer and Row-Press
into a single metric. Both RP and RH damage the data in the
cell by causing charge loss, albeit at a different rate. Our model
normalizes the rate of damage caused by RP (per tRC) to the
rate of damage caused by RH (per tRC). Our model estimates
the combined damage caused by RH and RP for any pattern.

Our first design, Impress-N (Naive), operates on integer
values of damage to demonstrate the impact of imprecise dam-
age estimation. Impress-N divides the time interval between

refresh into windows of tRC. If an activation occurs in the
given tRC window, that row participates in RH-tracking. If
a row is open for the full tRC window, that row is treated
as equivalent to causing activation and participates in RH-
tracking. Impress-N limits the impact of unmitigated RP to,
at most, one tRC. Impress-N can underestimate Row-Press
activity, reducing the threshold (T*) by 1.35x-2x, which is
identical to ExPress at the corresponding tON. While ImPress-
N has a similar impact on threshold, performance, and storage
as ExPress, it is compatible with in-DRAM tracking as it does
not limit row open time.

Our optimized design, Impress-P (Precise), operates on pre-
cise values of damage, including non-integer values. ImPress-P
dynamically tracks the row-open time (tON) and converts it
into an Equivalent Activation Count (EACT). We modify the
RH trackers to operate on non-integer values. For example, a
probabilistic solution that mitigates with probability p would
now select the row with probability p × EACT . A counter-
based tracker would increment the counter by EACT instead
of 1. As Impress-P is precise, it maintains the same tolerated
threshold (TRH) as a system that does not have RP mitigation.

We analyze ImPress with memory controller-based
(Graphene and PARA) and in-DRAM (Mithril and MINT)
trackers, and show that ImPress tolerates Row-Press for
both categories. The storage required for ImPress-P is 1.25x,
whereas it is 2x for both ExPress and ImPress-N.

This paper makes the following contributions:
1) We show that Row-Press can be transparently handled,

without limiting tON, by treating a row open for tRC as
equivalent to activation for RH schemes.

2) We develop a Unified Charge-Leakage Model to capture
the net effect of RP and RH for any given pattern into a
single number and use this metric to guide our design.

3) We propose ImPress-N, which treats a row open for the
full-time window of tRC as equivalent to an activation.
ImPress-N limits the impact of unmitigated Row-Press
to tRC, reducing the Rowhammer threshold by 1.35x-2x.

4) We propose ImPress-P, which tracks tON and uses the
damage due to RP and RH precisely into RH solutions.
ImPress-P does not reduce the tolerated RH threshold
and tolerates RP with negligible overhead.



II. BACKGROUND AND MOTIVATION

A. Threat Model

We assume that the attacker can issue memory requests
for arbitrary addresses. The attacker can choose the memory
subsystem policies (e.g., open-page versus closed-page) best
suited for the attack. The attacker knows the defense algorithm,
including which row has been selected for mitigation. We
declare an attack to be successful when it causes a bit-flip
at any location in memory.

B. DRAM: Operation and Timings

DRAM chips are organized as banks, two-dimensional
arrays of rows and columns. To access data from DRAM,
the memory controller must first issue an activation (ACT) to
open the row. The row can continue to be open until it is (a)
proactively closed by the memory controller (e.g. closed-page
policy) (b) closed due to a row conflict to service data from
another row, or (c) closed to perform refresh.

DRAM has deterministic timings, specified as part of the
JEDEC standards (see Table I). All data in DRAM is refreshed
every tREFW. To reduce the latency impact of refresh, memory
is divided into 8192 groups, and a refresh pulse is sent every
tREFI interval to refresh one group. DDR5 specifications allow
the postponement of up to 4 refreshes, so the time between
refreshes can be up to 5 times tREFI.

TABLE I
DRAM TIMINGS

Parameter Description Value
tACT Time for performing ACT 12 ns
tPRE Time to precharge an open row 12 ns
tRAS Minimum time a row must be kept open 36 ns
tRC Time between successive ACTs to a bank 48 ns
tREFW Refresh Period 32 ms
tREFI Time between successive REF Commands 3900 ns
tRFC Execution Time for REF Command 350 ns
tON Time the current row is open (dynamic value) –
tONMax Max time a row can be kept open per DDR5 19.5 µs
tMRO Max time a row can be kept open by the MC –

DRAM systems are susceptible to Data-Disturbance Errors
(DDE), whereby the operations on one DRAM cell can corrupt
the data stored in a nearby cell. An attacker could exploit DDE
to compromise system security [2, 4, 6, 8, 9, 23, 40, 43]. In
this paper, we focus on two specific modalities of DDE for
DRAM: Rowhammer (RH) and Row-Press (RP).

C. Rowhammer: Problem and Solutions

Rowhammer [22] occurs when a row (aggressor) is activated
frequently, causing bit-flips in nearby rows (victim). The
number of activations to an aggressor row to cause a bit-flip
in a victim row is called the Rowhammer threshold (TRH).
Solutions to mitigate RH must ensure that the victim rows are
refreshed before the aggressor row incurs TRH activations.

Typical solutions to mitigate RH rely on a tracking mecha-
nism to identify the aggressor rows and perform a mitigative
refresh on the victim rows. Identification of aggressive row
could be done using activation counters [19, 28, 31, 32, 34,
37] or probabilistically [17, 17, 22, 42].

Tracking can be performed on the Memory Controller
(MC) or transparently inside the DRAM chip (in-DRAM). The
advantage of in-DRAM tracking is the potential to solve the
RH problem inside the DRAM without relying on other parts
of the system. DDR5 supports in-DRAM tracking with Refresh
Management (RFM). Without loss of generality, we analyze
the following four trackers in our study.

Graphene [32] (Counters, MC-Based): Graphene uses Misra-
Gries algorithm to identify rows that reach TRH activations
and issue a mitigation. The number of tracking entries (per
bank) is inversely proportional to the threshold.

PARA [22] (Probabilistic, MC-Based): PARA selects each
activation for mitigation with a probability p, which is de-
termined based on a target failure rate.

Mithril [19] (Counters, in-DRAM): Mithril uses Counter-
based Summary to identify heavily activated row. Mitigation
is performed on receiving the RFM command (sent by MC
every RFMTH activations) for the row with the highest count.
The number of entries depends on RFMTH and TRH.

MINT [33] (Probabilistic, in-DRAM): MINT is a concurrent
work that achieves secure mitigation with just a single entry
per bank. At each RFM, MINT mitigates the identified aggres-
sor row and randomly selects the activation slot that will be
selected for mitigation in the upcoming RFMTH activations.

These trackers are designed to provide secure RH tolerance
for a specific TRH. However, if the attacker can cause bit-flips
in fewer than TRH activations, then the attacker can break all
of these designs. A new vulnerability makes this possible.

D. Row-Press: Bit-Flips with Fewer Activations

Row-Press (RP) [26] is a new DRAM DDE vulnerability,
which occurs when a row is kept open for a long time.
When the row is open, the cells of the neighboring rows leak
charge on the bit lines at a non-negligible rate. Over time, the
total charge loss due to this leakage can become substantial.
Figure 2 shows the access pattern for RP. Let tON be the time
a row is kept open. With RP, we keep the aggressor open for
a time that is much longer than tRAS. This pattern is repeated
continuously until a bit-flip occurs.

ACT

Row-A Open

ACT ACT

tRAS tPRE

tON
PRE Row-A Open PRE

Fig. 2. Pattern for the Row-Press Attack (PRE denotes Precharge operation)

Luo et al. [26] characterized RP for DDR4 devices and
showed that RP can reduce the number of activations required
to induce a bit flip by 18x (on average, when the row is kept
open for one tREFI, which is 7800ns in DDR4) to 156x (on
average, when the row is kept open for 9 tREFI, which is 70
µs for DDR4) compared to standalone RH attacks. As RP can
perform bit flips in much fewer than TRH activations, it can
break RH mitigations designed for a threshold of TRH.
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Fig. 3. Performance impact of limiting the time a row is open to a particular value, termed as tMRO (Maximum Row-Open Time). While SPEC workloads
(low/medium spatial locality) are less sensitive to tMRO value, Stream workloads (high spatial locality) can suffer significant slowdown at low tMRO.

E. Tolerating RP by Limiting the Row-Open Time

Row-Press exploits the fact that an open row can continue to
be open for a long time without any row conflicts. This time
is constrained only by the time between refresh operations
(tREFI, 3900ns for DDR5 and 7800ns for DDR4, although it
can be extended with refresh postponement to 5 times tREFI
in DDR5 and 9 times tREFI in DDR4).

Luo et al. [26] propose a solution to mitigate RP by using
the Memory-Controller to limit the Maximum Row-Open Time
(tMRO). Figure 4 shows the number of activations required on
the aggressor row with RP (i.e., change in TRH) as the tMRO
is varied from 36ns (minimum value, tRAS) to 630ns. For
example, if tON is limited to 186ns, the effective threshold
(T*) reduces to 62%. The RH mitigation can be redesigned to
tolerate this new threshold (T*). As this approach explicitly
uses RP to change the threshold of existing algorithms, we
term this solution Explicit Row-Press (ExPress) Mitigation.
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Fig. 4. Reduction in Tolerated TRH (T*) if the maximum tON is constrained
to tMRO (Note: the data is obtained from Table-8 of [27])

Limiting the time a row can be open can reduce the row
buffer hit rate due to premature closing of the row. The
performance impact of early row closure depends on the type
of workload. If the workload has poor row-buffer locality, early
closure will not cause a slowdown (it may cause slight im-
provement due to removing precharge from the critical path).
However, if the workload has a good spatial locality, early row
closure can significantly impact performance. Figure 3 shows
the normalized performance of our system for two classes of
workloads, SPEC2017 and Stream, as the tMRO is varied
from 36ns to 636ns. On average, for SPEC, low tMRO has
a negligible performance impact, whereas, for Stream, low
tMRO can cause a significant slowdown (e.g., on average,
10% for tMRO of 66ns). Thus, ExPress can cause substantial
slowdowns for an entire category of applications.

ExPress causes additional slowdown as the design must
cater to a lower threshold (T*), thus sending more mitigative
refreshes. We analyze ExPress for our four trackers.

Graphene: Figure 5 shows the performance of Express as
tMRO is varied. Stream workloads exhibit significant slow-
down at low tMRO (due to reduced row-buffer hits). Further-
more, a higher tMRO increases the effective threshold (T*).
So, Graphene must target an even lower threshold; hence, it
would need more entries. At tMRO of 80ns, the storage of
Graphene increases from 115KB to 160KB per channel.

PARA: Figure 5 also shows the relative performance of PARA
when the tMRO is varied. The trend is similar to Graphene
- negligible impact for SPEC workloads but significant slow-
down for Stream workloads at low values of tMRO.
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Fig. 5. Performance of Graphene and PARA as tMRO is varied. Stream has
slowdown at low tMRO. [Note: All values are geometric means.]

MINT and Mithril: ExPress uses the MC to limit tON
to tMRO. As the tMRO value is decided by the MC, this
value is not visible to the trackers inside the DRAM chip, as
current JEDEC standards do not allow such communication.
Thus, ExPress is incompatible with in-DRAM trackers, so
these trackers will continue to be vulnerable to RP. To make
ExPress viable for in-DRAM tracking, JEDEC must include a
new parameter (tMRO). Unfortunately, such changes are hard
to incorporate in JEDEC, as all memory/processor vendors
must adhere to new specifications. Furthermore, any such
specification is likely to select the tMRO conservatively.

F. Goal of Our paper

An ideal solution should tolerate Row-Press transparently,
without limiting tON (thus avoiding changes to JEDEC and
letting systems choose what performs best for their work-
loads), should not lower the effective threshold, should have
only a minor impact on performance and storage overheads,
and should be compatible with both MC-based and in-DRAM
designs. The goal of our paper is to develop such a solution.



III. EXPERIMENTAL METHODOLOGY

A. Performance Methodology

We use ChampSim [7], a cycle-level multi-core simulator,
interfaced with DRAMSim3 [25], a detailed memory system
simulator. We enhanced DRAMSim3 to support DDR5. Ta-
ble II shows the configuration for our baseline system. We
use a Minimalist Open-Page (MOP) memory mapping with 8
consecutive lines per row. For RFM, we assume a latency of
205ns (half of tRFC) and use a default RFMTH of 80.

TABLE II
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 8 cores at 4GHz
Width, ROB size 6-wide, 352

Last Level Cache (Shared) 16MB, 16-Way, 64B lines, SRRIP
Memory size 64GB – DDR5

Channels 2 (32GB DIMM per channel)
Banks x Ranks x Sub-Channels 32×1×2

Memory-Mapping Minimalist Open Page (8 lines)

We use two categories of workloads: First, the 10
SPEC2017 [1] (8-core rate mode) traces available from
ChampSim to study the impact of tMRO on conventional
workloads. Second, 4 streaming workloads [30] (8-core rate
mode) and 6 mixed streaming workloads (two with 4 copies
each), to study the impact of tMRO on high-locality work-
loads. For each workload, the trace represents the region of
interest. We warm up for 50 million instructions and run each
workload for 200 million instructions. We report performance
as normalized weighted speedup.

B. Reliability Methodology for RH Trackers

We perform mitigation by refreshing the victim rows. To
securely mitigate RH and RP, the parameters of the underlying
RH mitigation scheme must be configured appropriately. We
use a default TRH of 4K [18], and show sensitivity in
Section VI-F. For probabilistic schemes, we use a target bank-
failure rate of 0.1 FIT (1 failure per 10 billion hours, about
30x lower than the rate of naturally occurring errors [3]).

Based on our target failure rate, we configure PARA with
p=1/184. For Graphene, the number of entries is inversely
proportional to TRH. To tolerate a TRH of 4K, Graphene
needs 448 entries per bank (115KB SRAM per channel).

Mithril performs mitigation transparently under the RFM
command, issuing RFM every RFMTH activation per bank.
For mitigation, Mithril selects the aggressor row with the high-
est counter value. For a given mitigation rate (1 per RFMTH),
we determine the number of entries required to tolerate a
given threshold using Theorem-1 of [19]. For example, for
an RFMTH of 80, Mithril needs 383 entries per bank (86 KB
SRAM per channel) to tolerate a TRH of 4K.

MINT requires a single entry per bank to keep track of the
row to be mitigated at RFM. At each RFM, MINT mitigates
the given aggressor row and then randomly selects which
activation slot in the upcoming RFMTH (e.g. 80) activations
will be chosen for mitigation at the next RFM. As MINT lacks
configurability (for a fixed RFMTH), we report the threshold
tolerated by MINT as the figure of merit.

IV. UNIFIED CHARGE-LOSS MODEL

To mitigate Row-Press transparently and at a low cost,
we propose Implicit Row-Press (ImPress) mitigation. ImPress
converts the time spent doing Row-Press to an equivalent
activation count for Rowhammer. To design ImPress, we first
develop a unified charge-loss model for RH and RP.

A. Relative Charge-Loss Model for Rowhammer

Consider a DRAM cell that is the target of a RH attack.
After TRH activations to the aggressor row, the total charge
loss suffered by the cell must be above some critical value to
cause a bit flip. We need a model to quantify the Total Charge
Loss incurred after K activations. We quantify charge-loss as
a relative metric to keep our model simple. Let the relative
charge-loss per activation (CA) be 1 unit. The total charge
loss (TCLRH ) after K activations is given by Equation 1.

TCLRH = K · CA = K · 1 = K (1)

As a bit flip occurs after TRH activations, the total charge
loss is TRH units, representing the value of the critical charge
loss. Figure 6 shows the charge-loss model for RH. Note that
the time is counted in terms of tRC. RH is a perfect linear
attack – with unit damage in one unit of time.
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Fig. 6. Relative Charge-Loss Model for Rowhammer

B. Relative Charge-Loss Model for Row-Press

The charge loss for RP comes from two sources: (1) the
activation and the time incurred in the first tRC, the impact
of which is identical to an RH pattern, so this period incurs a
charge-loss of 1 unit (2) the time-dependent charge loss that
occurs because the row is kept open for an additional time
(tON − tRAS). As we normalize all times to tRC, we also
normalize the additional time to tRC. The total charge loss
(TCLRPA) from an RP pattern that keeps a row open for
tON time is given by Equation 2.

TCLRPA = 1 + f(
tON − tRAS

tRC
) (2)

The function f captures the rate of charge leakage per unit
of time (in terms of tRC) for RP. This function can be esti-
mated using the characterization data or picked conservatively
to never be below the observed data.
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Fig. 7. Total Charge Loss (TCL) for long-duration RP attacks that last for 1 tREFI (162 tRC in DDR4) and 9 tREFI (1462 tRC in DDR4). For our CLM
model for RP, we use alpha=0.48 as it covers all the devices across the three vendors (experimental data is reproduced from Appendix B of Luo et al. [27])

If we have the data for T* available, we can deduce the
relative charge leakage incurred by a single round of an RP
attack (for a given tON time) compared to a single round of
an RH attack. For example, if the RP attack causes T* to be
half of TRH, then each round of RP attack must leak 2x the
charge as a single round of RH attack. We use this insight to
estimate the charge leakage versus the attack time for an RP
attack (note that the total time for an RP attack is tON+tPRE,
as the attack eventually ends with a precharge). Figure 8 shows
the total charge loss for the RP attack and compares it with
the RH, as the attack time increases from 1 tRC to 8 tRC. RH
is a linear attack (K units of charge-loss in K units of time).
The red dots represent the charge-loss derived from the data
of Luo et al. [26] (data is a reorganized version of Figure 4).
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Fig. 8. Relative Charge-Loss Model for Row-Press

C. Conservative Linear Model (CLM)

We could do a curve-fit on experimental data (shown as
the dotted red line in Figure 8). However, we have two key
requirements: (1) the function must be simple for ease of
implementation inside the DRAM chip, and (2) the function
must not underestimate the TCL observed in the chips, as
doing so may lead to reliability and security failures. There-
fore, we develop a Conservative Linear-Model (CLM), which
provides a linear relationship2, albeit a conservative one, where
no observed data point exceeds the CLM line.

The general form of CLM is given by Equation 3.

TCLON = 1 + α ∗ ( tON − tRAS

tRC
) (3)

2We assume a linear model because a DRAM cell can be modeled as an
RC circuit and charge leakage can be approximated to be linear for short
period of time (tRC of 48ns compared to retention of 32ms).

Where α is the relative charge leakage per tRC for RP
(α ≤ 1, and α = 1 gives RH). For the data from Luo et al.
shown in Figure 8, α = 0.35, leading to Equation 4.

TCLRPA = 1 + 0.35 ∗ ( tON − tRAS

tRC
) (4)

An RP attack degenerates into an RH attack if tON= tRAS.
Thus, Equation 3 represents both RH and RP for any pattern.

D. Row-Press at Large Time Scale
The data shown in Figure 8 is for a short-duration (sub-

microsecond) RP attack. However, RP attacks can last up to
one tREFI without refresh postponement and up to 9x of tREFI
with refresh postponement (for DDR4). Appendix B of Luo
et al. [27] also characterizes devices from the three memory
vendors for long-duration RP attacks, specifically 1 tREFI (162
tRC in DDR4) and 9 tREFI (1462 tRC in DDR4). Figure 7
shows the total charge loss (TCL), as the time is normalized in
terms of tRC. For comparison, the TCL of Rowhammer is also
shown, if performed for an identical duration. We also show
our CLM model for RP, and we set α = 0.48, as it covers
all the characterized devices. Thus, we can use Equations 3 to
model short-duration and long-duration RP attacks.

E. Key Observations:
Our model enables us to estimate the combined effect of

RH and RP patterns, where the RP length is limited by the
DDR specifications. The takeaways from our model are:

1. Row-Press is a much slower attack than Rowhammer.
Even with α of 0.48, RP causes less than half the damage
(charge loss) per unit time as a standalone RH attack.

2. Any time spent in RP is the time that the attacker cannot
perform RH. Therefore, doing RH alone is the fastest way to
reach a critical charge loss, limited only by RH mitigation.

3. A secure RP solution must reduce the dependency on
α as α may vary between chips, or select the value of α
conservatively, so that it is guaranteed to work across all chips.

4. As the leakage of RH is due to activity (row activation)
and RP is due to idling, it is unlikely α would exceed 1. So,
using α of 1 avoids relying on per-device behavior.

The key assumption in our work is that the leakage rate
(per unit time) for Row-Press is less than or equal to that of
Rowhammer (i.e. α ≤ 1). This seems safe as Rowhammer
is activity-based leakage, while Row-Press is idle leakage.



V. IMPRESS-N: THE NAIVE VERSION

We propose two variants of ImPress. The first version is
ImPress-N, the naive version, designed to handle only integer
charge-loss values. ImPress-N aims to understand the impact
of reduced precision on ImPress’s effectiveness. ImPress-N
divides the time into windows of tRC, and if a row is open
for the entire window, it treats it as equivalent to activation
for RH mitigation. Thus, ImPress-N limits the impact of any
unmitigated Row-Press to at most one tRC window. In this
section, we provide the design and analysis of ImPress-N and
bound the worst-case effect of the unmitigated Row-Press.

A. ImPress-N: Design and Operation

The key insight in ImPress-N is that secure RH mitigations
are designed to tolerate the worst-case RH pattern, which
causes activation in each time window of tRC. With Row-
Press, if a row is kept open for a long time, then by design,
such a pattern will not cause as many activations as the worst-
case. If we convert the RP activity into RH activity, we can
use the existing RH framework to mitigate RP.

Figure 9 shows the overview and design of ImPress-N.
ImPress-N divides time into windows of tRC. If a row activa-
tion occurs within the window, that row participates in the RH
mitigation. This is the case for Row-A in the second window
and Row-B in the fourth window. Furthermore, if a row is
kept open for the entire tRC window, then it is treated as
equivalent to causing a row activation for that open row. That
open row again participates in RH mitigation. For example,
Row-A, open for tRC during the third window, is treated as
activating Row-A for RH mitigation.

ACT
Row-A

ACT
Row-B

tRC

Row-A Open

Open=A

}Treat as
ACT Row-A

Open=A

timePRE PRE

Fig. 9. Design and Operation of ImPress-N. A row open for tRC is treated
as equivalent to causing an activation within that window.

To implement ImPress-N, the system requires two counters.
First, a Timer register identifies each window’s ending time.
Second, an Open-Row Address (ORA) register that stores the
row address of the open row. ORA is filled at the end of each
window. Suppose that the address to store in ORA is the same
as the address present in ORA. In that case, it indicates that
the row was open for the entire window and participated in
the RH tracking mechanism, similar to causing an activation.

ImPress-N is simple to incorporate into current RH mitiga-
tion solutions. It converts RP activity into a series of ACTs,
which are already handled by RH mitigation, so the underlying
tracker design does not need to be changed. The total storage
for implementing ImPress-N is 1 byte for Timer and 3 bytes
for ORA, for 4 bytes per bank (32 bytes per chip).

B. Bounding the Impact of Unmitigated Row-Press
ImPress-N converts an RP pattern that keeps a row open

over multiple tRC windows into an equivalent number of
ACTs (one per tRC). However, since it operates on integer
values, it does not mitigate RP at a granularity lower than
tRC. An attack can exploit this to reduce the threshold.

ACT
Row-A

PRE timeRow-A Open

ACT
Decoy

PRE Open

ACT
Row-A

PRE

tRC

Fig. 10. The pattern for exploiting the unmitigated Row-Press of ImPress-N
– an attacker can keep the row open for tRAS+tRC and evade RP mitigation.

Figure 10 shows the worst-case pattern for ImPress-N. The
attacker is focused on causing undetected RP on Row-A.
The pattern causes Row-A activation at a time within the
precharge-time (PRE) of the ending of the current window.
Row-A has not yet been opened and will not be stored in ORA.
The pattern keeps Row-A open for a time equal to tRC+tRAS.
As Row-A is open at the end of the current tRC window, the
address of Row-A is stored in ORA. During the subsequent
window, at a point slightly before the precharge time from the
ending of the window, an ACT is sent for a decoy row, which
causes precharge and closes Row-A. Thus at the end of the
window, ORA gets an invalid row. The pattern is repeated.

For each round, the RH mitigation will see only a single
ACT for Row-A and thus treat this as an RH attack, causing
a charge loss of 1 per round for Row-A. As the tON time for
Row-A is (tRC+tRAS), we can use Equation 3 to quantify the
charge loss per round as (1+α). Thus, the Effective Threshold
(T ∗) with ImPress-N is given by Equation 5.

T ∗ =
TRH

(1 + α)
(5)

The impact on the threshold depends on α. The value of
alpha from experimental data (tON ≤ 2tRC) reported by Luo
et al. is 0.35. So, T* is equal to TRH/1.35 or 0.74×TRH. If we
want device independence, then α=1 and T* equals TRH/2.

C. Protecting RH Trackers with ImPress-N
Appendix A describes how ImPress-N can be applied to

our four tracker designs: PARA, Graphene, Mithril, and MINT.
For PARA and Graphene, ExPress and ImPress-N have similar
performance overheads as they must be operated at a reduced
threshold (e.g., 2x lower). Overall, ImPress-N can make Row-
Press mitigation viable at small performance overheads for
Mithril and MINT.

Key Takeaway: For MC-based trackers, ImPress-N has a
similar impact as ExPress on threshold, performance, and
storage. However, as ImPress-N does not limit tON, it can
also be used with in-DRAM trackers, thus representing the
first solution to protect such trackers from RP attacks.



VI. IMPRESS-P: THE PRECISE VERSION

While ImPress-N is a simple design (no changes to the
trackers, except for the number of entries), it can still incur
performance overheads due to lowering the effective threshold
resulting from unmitigated Row-Press that occurs at sub-tRC
granularity. Furthermore, the impact of ImPress-N on the
threshold depends on the value of α, and we want a solution
that naturally offers protection of α=1 without any of the
associated overheads. Our next design, Impress-P (Precise),
overcomes both shortcomings of ImPress-N. The key idea in
ImPress-P is to measure the tON time of a row and use it
to determine the Equivalent Number of Activations (EACT)
between the time the row is opened and when it completes
the precharge. ImPress-P ensures that there is no lowering of
the threshold due to mitigating Row-Press. In this section, we
provide the design and analysis of ImPress-P and study the
impact of applying Impress-P to different trackers.

A. ImPress-P: Design and Operation

The key insight in ImPress-P is that secure RH mitigations
are designed to tolerate the rate of damage that occurs under
the RH pattern. So, we can treat every time unit in terms of
tRC (integer or fractional) as equivalent to the number of ACTs
(integer or fractional). This allows us to precisely convert any
amount of RP activity into equivalent RH activity and use
the existing RH framework to accurately mitigate RP without
impacting the threshold.

ACT
Row-A

tON

Row-A Open timePRE

EACT=(tON+tPRE)/tRC)  

Fig. 11. Design and Operation of ImPress-P. ImPress-P measures the time
the row is open and converts it into an equivalent number of ACT (EACT).

Figure 9 shows the design of ImPress-P. ImPress-P only
requires a timer to measure when the row is open (tON). The
timer starts when the row is opened and stops when the row is
closed. The total duration for access must also include the time
required for precharge, so the total time is equal to tON+tPRE.
We divide the total time by tRC to get the Equivalent Number
of ACTs (EACTs). For example, if tON is equal to tRAS, this
is the same as RH attack, and EACT is equal to 1. If tON
is equal to tRAS+tRC, the access lasts for two tRC and we
would get EACT=2. EACT is guaranteed to be at least 1, but it
can be a fractional value (e.g., if tON = tRAS + tRC/2, EACT
= 1.5). Thus, the RH-mitigation algorithms must be able to
handle a non-integer number of ACT.

For counter-based algorithms, we modify the counters to
support fractional values. Instead of increasing by 1, we
increase the counter by EACT. We modify the selection
probability from p to p*EACT for probabilistic solutions.
Thus, ImPress-P applies to both types of trackers.

ImPress-P requires a single Timer (10 bits) per bank (32
per chip). All DRAM activity occurs and is measured at the
granularity of the DRAM cycles. For our 2.66GHz DRAM,
this means that tRC (48ns) equals 128 cycles; thus, the division
by tRC can be implemented by shifting right by 7 bits.

B. Impact of Counter Precision on Effective Threshold

The fractional part of EACT is 7 bits (due to division by
tRC). For counter-based tracking algorithms, this means that
the counter must also be extended by 7 bits to incorporate the
fractional values of EACT precisely. A design may modify the
counter-based tracker with fewer bits to store the fractional
value (to save on storage) at the expense of some tracking
error, which reduces the effective threshold (T*).
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Fig. 12. Impact of number of counter-bits for storing the fractional part on
the effective threshold of ImPress-P (value is normalized to TRH).

Figure 12 shows the effective threshold (T*) of ImPress-P
as the number of counter-bits used to store the fractional part
is varied from 0 to 7. With 7 bits, we track accurately, so T*
equals TRH (no reduction in threshold). With fewer than 7
bits, say b bits, we get a precision equal to 1

2b
, so the loss in

accuracy is also equal to 1
2b

. Thus, with 6 bits, the relative T*
reduces to 0.985, 5 bits to 0.97, and 4 bits to 0.94. Finally, if
we have 0 bits for the fractional part, ImPress-P degenerates
to ImPress-N and has T* of 0.5 times TRH.

Our default implementation of ImPress-P uses 7-bits to store
the fractional part. Thus, ImPress-P maintains the same TRH
with Row-Press protection compared to a system without any
Row-Press protection. Furthermore, ImPress-P avoids depen-
dency on α, which is implicitly designed for α of 1. Thus,
while implementing and comparing designs with ImPress-P,
we will use α=1.

C. Protecting RH Trackers with ImPress-P

Unlike ExPress, ImPress-P does not place any limit on tON.
Thus, it does not affect performance due to the early closure
of an open row. Furthermore, as ImPress-P does not affect
the threshold, it does not incur any additional mitigations due
to activations compared to an idealized baseline that does not
have Row-Press. However, ImPress-P can still incur additional
mitigations due to a row being kept open for a long time.

We analyze ImPress-P, ImPress-N, and ExPress for our
trackers. We implement ExPress with tMRO of tRAS+tRC.
As ExPress is incompatible with in-DRAM tracker de-
signs (Mithril and MINT), we compare ImPress-P with only
ImPress-N for these two designs. We describe the changes
required in the tracking algorithms to support ImPress-P.
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  In-DRAM (RFM) ImPress-N with α=1 (RFM-40) ImPress-P with α=1 (RFM-80)

Fig. 13. Performance of (a, top) Graphene and (b, mid) PARA for ExPress, ImPress-N, and ImPress-P (c, bottom) Performance of in-DRAM (MINT) for
ImPress-N and ImPress-P (ExPress is not shown as it is not applicable to in-DRAM trackers). Note: All performance is normalized to No-RP.

Impact on Graphene: For TRH of 4K, Graphene requires
448 entries per bank. ExPress and ImPress-N (α of 1) double
it to 896 per bank. With ImPress-P, the number of entries
remains unchanged at 448. However, each entry now requires
7-bits of extra storage to store fractional value of EACT, hence
ImPress-P incurs 25% storage overhead (each entry is 28-bits).
Thus, the total storage required for ImPress-P is only 1.25x of
No-RP, whereas it was 2x for both ImPress-N and ExPress.

Figure 13 shows the performance of Graphene with ExPress,
ImPress-N and ImPress-P, normalized to a baseline that does
not suffer from RowPress. As ImPress-P does not affect the
threshold or restrict tON, it incurs a negligible overhead.

Impact on PARA: Conventionally, PARA uses a constant
probability p for all activations. For TRH of 4K, p=1/184, and
ImPress-N and ExPress p=1/92. ImPress-P changes PARA to
use a variable value for p for each activation, depending on
the tON time. For each activation, PARA uses p̂ = p∗EACT .

Figure 13 shows the performance of PARA with ExPress,
ImPress-N, and ImPress-P, normalized to a baseline without
Row-Press. ImPress-P has significantly reduced performance
overheads (especially for Stream) compared to ExPress.

Impact on Mithril: For TRH of 4K and a default RFMTH
of 80, Mithril requires 383 entries. This increases to 1545
entries (4x) with ExPress and ImPress-N (α=1). With ImPress-
P, the number of tracking entries remains unchanged at 383.
However, each entry must now be provisioned with 7 more bits
to track the fractional values, resulting in 25% storage over-
heads, much less than the 4x overhead required for ExPress
and ImPress-N. The performance overheads of Mithril, due to
RFM commands, remain the same as the No-RP baseline.

Impact on MINT: MINT contains three registers: SAN
(Selected Activation Number), CAN (Current Activation Num-
ber), and SAR (Selected Address Register). Both SAN and
SAR remain unchanged. We modify CAN to have 7 more
bits corresponding to the fractional value of EACT. For each
activation, we increase CAN by the value of EACT. Thus,
each activation gets a selection probability in proportion to
the EACT. If CAN crosses SAN, the row address is stored in
SAR. At RFM, the row address in SAR (if valid) is mitigated,
and a new value for SAN is selected. ImPress-P increases
the storage overhead of MINT from 4 bytes to 5 bytes. With
ImPress-N, the threshold increases from 1.6K to 3.1K, whereas
with ImPress-P, it remains unchanged at 1.6K. Figure 13(c)
shows the performance of No-RP, ImPress-P, and ImPress-N.
ImPress-P has an identical performance to No-RP.

D. Summary of Comparisons

Table III compares ExPress, ImPress-N, and ImPress-P.
The shortcomings are highlighted in bold. ImPress-P requires
minor changes (to include EACT) and provides near-ideal
performance. Therefore, we will assume that by default, Im-
Press is implemented only as ImPress-P (ImPress-N was an
intermediate step to emphasize the importance of precision).

TABLE III
COMPARISONS OF EXPRESS, IMPRESS-N, AND IMPRESS-P

Property ExPress ImPress-N ImPress-P
Puts Limit on tON Yes No No

Affects Threshold (T*) Yes (up to 2x) Yes (up to 2x) No (1x)
Performance Overheads High Medium Low
More Tracking Entries Yes (up to 2x) Yes (up to 2x) No (1x)
Wider Tracking Entries No No Yes (Minor)

In-DRAM Trackers Incompatible Compatible Compatible
Device Dependency Yes (alpha) Yes (alpha) No



E. Activation and Energy Overheads
Tolerating Row-Press may cause extra activations due to row

closure or mitigations. Figure 14 shows the average mitigations
relative to an unprotected baseline. Graphene without RP
protection (No-RP) causes less than 1% extra activations. With
ExPress, mitigative activations remain low, however, early
row closure increases activations by 56% (for both Graphene
and PARA). Graphene with ImPress-P does not incur addi-
tional activation overhead. For PARA, demand activations with
ImPress-P increase negligibly by 2% on average. However,
the mitigative activations increase by 12%. ImPress-P has
significantly lower activation overhead than ExPress, reducing
it from 56% to 1% for Graphene, and 61% to 14% for PARA.
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Fig. 14. Relative activation overhead of Graphene and PARA (No-RP,
Express, and Impress-P), broken down into demand activations and mitigative
activations (all normalized to activations in the unprotected baseline).

Energy Overheads: On average, activations account for 11%
of the baseline DRAM energy. ExPress increases DRAM en-
ergy by 6% for Graphene (7% for PARA), while for Impress-P,
the increase in energy is 1% for Graphene (2% for PARA).

F. Scalability to Lower Rowhammer Threshold
Figure 15 shows the performance of Graphene and PARA

normalized to an unprotected baseline as TRH varies from 1K
to 4K. At TRH of 1K. Graphene incurs no slowdown for No-
RP and ImPress-P, while ExPress has 4.4% slowdown. PARA
incurs a 1.5% slowdown for No-RP, and ExPress increases the
slowdown to 8.9%. ImPress-P reduces it to 7.7%. The storage
overheads of Graphene and performance overheads of PARA
make them impractical for low TRH. To tolerate low TRH,
JEDEC [15] announced Per-Row Activation Counting (PRAC)
where the DRAM array stores a counter for each row (8KB).
ImPress can be used with PRAC by dedicating 7 bits of the
counter to store the fractional EACT. Alternatively, the PRAC
counter can be incremented by round-up of EACT, which
would ensure security, although with slightly more mitigations.
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Fig. 15. Performance of Row-Press mitigation with Graphene and PARA,
normalized to an unprotected baseline. [Note: All values are Geo-Mean.]

VII. RELATED WORK

To the best of our knowledge, ImPress-P represents the
first tracker implementation that can securely tolerate both
Rowhammer and Row-Press. ImPress exploits the observation
that the row-open time can be converted into equivalent
activity for Rowhammer. Two prior works have made similar
observations. For example, ProTRR [28] suggests “increasing
the counter for victims of the (aggressor) row that remains
active”. However, ProTRR does not provide any methodology
to convert the row-open time into equivalent RH (notably,
ProTRR appeared one year before Row-Press was publicly
known and characterized, so the lack of such details is under-
standable). Furthermore, ProTRR operates with integer-valued
counters, and ImPress-N shows that the integer-valued design
would have a significantly higher threshold than ImPress-P.

Although DSAC [11] uses time-weighted counting, it suffers
from three problems: (1) the weight is a logarithmic function
of time. For example, for tON=256 tRC, the weight will be
approximately 8, whereas, the Row-Press characterization [26]
shows that the weight should be about 0.48*256 = 122
(15x higher). Thus, DSAC significantly underestimates the RP
damage, (2) Row-Press is ignored for the row getting installed
in the tracker, as it always uses a weight of 1, (3) DSAC uses
integer counter values and would suffer from the same problem
as ImPress-N, even if the weights were accurate. We note that
DSAC can be broken with Blacksmith [12], so assessing the
security of DSAC against Row-Press is impractical.

Several studies [17] [22] [48] [42] [17] [41] [24], [32] [34]
have investigated efficient trackers to identify aggressor rows.
Our design can work with these trackers. We do not consider
In-DRAM designs of TRR [6], DSAC [11], and PAT [21]
as these can be broken with simple patterns [6] [14]. Our
work applies to secure in-DRAM trackers like Mithril [19],
PrIDE [13], MINT [19], ProTRR [28], and PRHT [21].

Prior works have looked at alternative mitigation tech-
niques, such as rate-limiting [46] or Dynamic row-
migration [36] [39] [45] [44]. Prior studies [4, 5, 16, 20, 38]
have also proposed using ECC and detection codes to tolerate
Rowhammer. All these works can reduce, but not eliminate,
DDE errors. REGA [29] and HiRA [47] modify the DRAM
module to support multiple concurrent mitigative activations.

VIII. CONCLUSION

The scaling of DRAM to single-digit nanometers results
in new modalities of Data-Disturbance Errors (DDE). While
Rowhammer is well known, a new pattern, Row-Press, was
recently discovered, which causes charge leakage by keeping
the row open for a long time. RP reduces the number of
activations required to induce a bit-flip. Prior work proposed
to mitigate RP by limiting the maximum time a row can be
kept open, however, that proposal incurs high overheads and
is incompatible with in-DRAM tracking. We propose Implicit
Row-Press (ImPress) mitigation, which converts RP activity
into an equivalent amount of RH activity, and uses the RH
framework to mitigate RP. Our solution does not restrict tON,
incurs low overhead, and applies to all trackers.
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Fig. 16. Performance of (a, top) Graphene and (b, mid) PARA for ExPress and ImPress-N (both designs for α of 0.35 and 1) (c, bottom) Performance of
in-DRAM (MINT) for ImPress-N (ExPress is not shown as it is not applicable to in-DRAM trackers). Note: All performance is normalized to No-RP.

APPENDIX-A: PERFORMANCE IMPACT OF IMPRESS-N

Unlike ExPress [26], ImPress-N does not place any limit
on tON. Therefore, it does not suffer from reduced row-buffer
hits due to premature closing of an open row due to tMRO.
However, ImPress-N still incurs performance overhead from
the extra mitigations due to the reduction in threshold (T*)
and from considering rows opened for tRC as an ACT.

We analyze ImPress-N and ExPress for our four trackers.
To ensure that both schemes target the same T*, we evaluate
ExPress with tMRO set to (tRAS+tRC).

Impact on Graphene: For TRH of 4K, Graphene uses an
internal threshold of 1333 (mitigation is sent when counters
reach the internal threshold), requiring 448 entries per bank
(a total of 115KB SRAM per channel). To make Graphene
Row-Press tolerant with ExPress or ImPress-N, the number
of entries must be increased directly to (1+α). Thus, for α
of 0.35, Graphene requires 605 entries per bank (a total of
155KB SRAM per channel), and α of 1, Graphene requires
896 entries per bank (a total of 230KB SRAM per channel).
Thus, ExPress and ImPress-N require a total storage overhead
of 1.35x-2x compared to the No-RP design.

Figure 16 shows the performance of Graphene with ExPress
and ImPress-N, normalized to No-RP. As graphene efficiently
sends mitigative refreshes, the slowdown comes mainly from
reducing row-buffer hits. For Stream workloads, ExPress in-
curs an average slowdown of 7.5%, whereas ImPress-N incurs
a negligible slowdown. For SPEC, both ExPress and ImPress-
N have similar performance.

Impact on PARA: For TRH of 4K, PARA requires p to be
1/184. At α of 0.35, p increases by 1.35x to 1/136, for both
ExPress and ImPress-N. At α of 1, p increases to 1/92 for both
ExPress and ImPress-N. Figure 16 shows the performance of
PARA with ExPress and ImPress-N, normalized to No-RP. On
Stream workloads, ExPress incurs an average slowdown of 8%
(at α of 0.35) and 8.4% (for α of 1), whereas ImPress-N incurs
an average slowdown of 4.7% (at α of 0.35) and 6.7% (for α
of 1). Overall, ImPress-N performs better than ExPress.

ExPress is incompatible with in-DRAM trackers, so we
evaluate Mithril and MINT only with ImPress-N.

Impact on Mithril: We assume a default RFM Threshold
(RFMTH) of 80. For such RFMTH to handle a TRH of 4K,
Mithril requires 383 entries. To account for the unmitigated RP
of ImPress-N, Mithril would need to target a revised threshold
(T*) of either 2963 (α=0.35) or 2000 (α=1). Thus, the number
of entries increases from 383 to 615 (α=0.35) or 1545 (α=1).

We assume a system that already performs RFM at a
RFMTH of 80 (to tolerate Rowhammer). Therefore, Mithril
and MINT do not incur additional performance overheads.

Impact on MINT: We use RFMTH of 80 for MINT. There-
fore, for No-RP, MINT can tolerate a TRH of 1.6K. Due to the
unmitigated Row-Press of ImPress-N, the tolerated threshold
increases to 2.1K (α=0.35) and 3.1K (α=1). Alternatively, we
could reduce RFMTH to 60 (α=0.35) or 40 (α=1) to retain the
same tolerated TRH (of 1.6K). Figure 16 shows the slowdown
of RFM-60 and RFM-40 compared to RFM-80. The average
slowdown is small and ranges from 3% to 5%.



APPENDIX-B: PERFORMANCE IMPACT OF ATTACKS

We analyze the performance implications of ImPress-P
under attacks that combine both Rowhammer and Row-Press.
We note that such patterns affect the performance only for
memory-controller-based mitigations. The performance of in-
DRAM Rowhammer mitigations remains independent of the
access patterns as mitigations are performed under REF.

A. Parameterized Attack Patterns for RH and RP

The RH and RP patterns can be parameterized, as shown in
Figure 17. In this pattern, an activation keeps the row open for
tRAS. Then, the row is kept open for an additional K times
tRC time, where K is the Row-Press parameter. Finally, the
row is closed, incurring the tPRE time. Thus, the total time for
one pattern loop is (K+1)∗ tRC. The pattern degenerates to
Rowhammer for K = 0. The pattern keeps the row open for a
full tREFI for K = 72. The pattern is repeated continuously,
and we want to find the relative time taken to perform a large
number of attack iterations (N).

ACT

Min tON

ACT

tRAS

ACT Row-Press (extra tON)

K*tRC

PRE

Row Open

tPRE

Fig. 17. Attack Loop for combined Rowhammer and Row-Press pattern.

B. Analyzing the Performance Impact on Graphene

For the Rowhammer threshold of T, Graphene performs
mitigation when the counter reaches T/2 activations. For each
mitigation, we need 4 activations, assuming a Blast Radius
of 2. Thus, Rowhammer performs four additional activations
every T/2 demand activation for a throughput loss of 8/T .
The slowdown is 0.2%, 0.4%, and 0.8% for the thresholds of
4K, 2K, and 1K, respectively, as shown in Figure 18.
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Fig. 18. Slowdown of ImPress-P with Graphene for the attack pattern.

To analyze Row-Press, we vary the parameter ”K”. The total
time for N iterations in the unprotected baseline is N * (K
+ 1) * tRC. In each loop iteration, the counter of Graphene
increases by (K+1). When it reaches T/2, Graphene issues a
mitigation (4 activations). Thus, the slowdown will be four
activations per (T/2)/(K+1) iteration of the loop. To simplify
our analysis and without loss of generality, consider the case
where the attack loop is repeated N = (T/2)/(K+1) times.

tmitigation = 4 · tRC (6)

tone−iter = (K + 1) · tRC (7)

tN = (K + 1) · tRC · (T/2)

(K + 1)
= (T/2) · tRC (8)

Slowdown = tmitigation/tN =
4 · tRC

(T/2) · tRC
= 8/T (9)

Thus, the slowdown of Graphene remains at 8/T, inde-
pendent of ”K” (the effect of Row-Press). This is expected
as ImPress-P converts Row-Press into an equivalent amount
of Rowhammer; therefore, the slowdown per unit attack
time remains the same, regardless of whether the pattern is
Rowhammer or Row-Press. Figure 18 shows the slowdown of
Graphene as the amount of Row-press is varied (for T of 4K,
2K and 1K), and the slowdown does not depend on Row-Press.

C. Analyzing the Performance Impact on PARA

Consider the case of Rowhammer (K = 0). For each
activation, PARA issues a mitigation with probability p. Each
mitigation performs four activations (two victims on each side
of the aggressor row). Thus, the overhead of PARA is 4p per
activation. For thresholds of 4K, 2K, and 1K, the value of p
is equal to 1/84, 1/42, and 1/21. At p=1/84, the mitigation
overhead of PARA is 4.76%, as shown in Figure 19.
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Fig. 19. Slowdown of ImPress-P with PARA for the attack pattern.

To analyze Row-Press, we vary the parameter ”K”. The
time for each iteration is (K+1) * tRC. With ImPress-P, the
mitigation probability of PARA for each loop iteration would
increase proportionately to (K+1), so it becomes (K + 1) ∗ p.
The probability can reach a maximum value of 1, so the
mitigation probability for each loop is effectively MIN(1, p∗
(K + 1)). Thus, the mitigation overhead of PARA becomes
4∗MIN(1, p∗(K+1))∗tRC per (K+1)∗tRC time period,
as shown in Equation 10.

Slowdown =
4 ∗MIN(1, p · (K + 1))

(K + 1)
(10)

Figure 19 shows the slowdown of PARA for thresholds of
4K, 2K, and 1K, as the amount of Row-Press (K) ranges
from 0 to 100. We note that Rowhammer is still the most
potent attack. The slowdown of Row-Press remains similar to
Rowhammer until a critical point, after which the slowdown
starts to reduce. This is because the loop becomes large, and
PARA’s probability, p, saturates at 1. Note that PARA has high
mitigation overhead for both Rowhammer and Row-Press.



APPENDIX-C: ARTIFACT

A. Abstract

This artifact presents the code, traces, and methodology to
reproduce the evaluation results for ImPress. Our evaluations
use ChampSim, a cycle-level multi-core simulator, interfaced
with DRAMSim3, a detailed memory system simulator. We
provide the complete code base and all traces used in our ex-
periments. The code base includes documentation and scripts
to compile ChampSim and DRAMSim3, download traces,
launch experiments, parse results, and plot graphs. Most of
the simulator code is in C++, scripts for launching experiments
are in Bash, meta-scripts for creating job files and collecting
stats are in Perl, and plotting scripts are in Python. This
artifact enables the recreation of motivation Figures 3 and 5 as
well as the key result Figure 13. This artifact and simulation
infrastructure have been adapted from the START artifact [37].

B. Artifact check-list (meta-information)
• Algorithm: RowPress mitigations – ImPress-P, ImPress-D, and

ExPress – and Rowhammer mitigations – PARA, Misra-Gries,
and RFM.

• Program: ChampSim multi-core simulator interfaced with
DRAMSim3 memory-system simulator and execution traces
from SPEC2017 [1] and STREAM [30] workloads.

• Compilation: Tested with cmake v3.23.1 and gcc v10.3.0.
• Binary: ChampSim simulator binary and DRAMSim3 simu-

lator as a dynamically loaded library.
• Data set: Dynamic execution traces from 10 SPEC2017 and

4 STREAM workloads.
• Run-time environment: All experiments were run on RHEL

Server 7.9 running Linux kernel v3.10.0 on x86 64 processors.
• Hardware: Requires many-core server with at least 4GB

memory per core. We used a scale-out HPC cluster with
hundreds of cores and TBs of memory.

• Run-time state: 4GB of memory per core is required to store
the dynamic execution state of simulations.

• Execution: One processor core is required per workload
simulation experiment. All workloads and configurations run
independently and can be fully parallelized. The artifact includes
35 configurations with 20 workloads each for 700 experiments.

• Metrics: Graphs use normalized weighted speedup as the
performance metric.

• Output: Recreating motivation Figures 3 and 5 and key result
Figure 13.

• Experiments: Instructions to set-up and run experiments, parse
results, and plot graphs are available in the README file.

• How much disk space is required (approximately)?: 4.7GB
for the traces and less than 100MB for the simulator and scripts.

• How much time is needed to prepare workflow (approx-
imately)?: Downloading traces might take 30 minutes to
an hour (depending on network bandwidth). Compiling the
simulator binaries takes less than a minute per configuration,
and there are 35 configurations (so about 30 minutes).

• How much time is needed to complete experiments (ap-
proximately)?: Each experiment runs for about 6 hours on
average, so recreating all 700 experiments requires 4.2K core
hours (approximately three days on one 64-core server). Note
that some experiments can take up to 12 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache License 2.0.
• Data licenses (if publicly available)?: MIT License.
• Workflow framework used?: We extend run-scripts of

START [37], which is a recent Rowhammer tracker.

• Archived (provide DOI)?: https://zenodo.org/doi/10.5281/
zenodo.13743004.

C. Description

1) How to access: The ChampSim simulator code
and instructions on how to evaluate the artifact
are available on GitHub at https://github.com/Anish-
Saxena/impress micro2024. The traces can be
downloaded from Dropbox at https://www.dropbox.
com/scl/fi/qeh3rztdh4md76lhsm0u4/traces.tar.gz?rlkey=
xq1yu8zithl497dnef1jpp0gv&st=r1iam07b&dl=0.

2) Hardware dependencies: The artifact requires many core
server(s) to run all configurations and workloads. The 700
workload simulations are stemming from 35 configurations
with 20 workloads. As all workloads can run in parallel, it
would take about three days of runtime on one 64-core server.
At least 4GB of memory per core is required.

3) Software dependencies: Compilation requires gcc/ g++,
cmake, and make. Launch scripts use Bash. Job creation
scripts require Perl, although we supply default job files (for
slurm cluster manager) that can be easily adapted to the
experimental system. Trace download is streamlined using
Dropbox, although they can also be downloaded using wget.
The plotting scripts use Python (specifically, the matplotlib
library) and Jupyter Notebook.

4) Data sets: SPEC2017 and STREAM workload dynamic
execution traces.

D. Installation

Please clone the GitHub repository and follow the step-by-
step instructions available in the README file.

E. Experiment workflow

The workflow setup includes downloading the 14 execution
traces, cloning simulator repositories, compiling simulator
binaries, and making changes to run scripts (either using helper
scripts or manually) as required. Once set up, experiments
are launched in parallel (depending on compute resources).
Finally, the simulation results are parsed, and graphs are
plotted to recreate relevant figures.

F. Evaluation and expected results

The artifact provides scripts to parse the simulation results
to derive the normalized weighted speedup. The relevant
commands are provided in the README. The Python scripts
in the Jupyter Notebook plot the relevant graphs. This artifact
enables the recreation of motivation Figures 3 and 5 as well
as the key result Figure 13.

G. Experiment customization

Running all of the configurations discussed in the paper
requires significant computing resources (about 4,200 core
hours). If compute is constrained, the experiments can be sped
up by reducing the simulated instructions or by running a
subset of workloads. This requires changing the run scripts
and job-creation scripts.

https://zenodo.org/doi/10.5281/zenodo.13743004
https://zenodo.org/doi/10.5281/zenodo.13743004
https://github.com/Anish-Saxena/impress_micro2024
https://github.com/Anish-Saxena/impress_micro2024
https://www.dropbox.com/scl/fi/qeh3rztdh4md76lhsm0u4/traces.tar.gz?rlkey=xq1yu8zithl497dnef1jpp0gv&st=r1iam07b&dl=0
https://www.dropbox.com/scl/fi/qeh3rztdh4md76lhsm0u4/traces.tar.gz?rlkey=xq1yu8zithl497dnef1jpp0gv&st=r1iam07b&dl=0
https://www.dropbox.com/scl/fi/qeh3rztdh4md76lhsm0u4/traces.tar.gz?rlkey=xq1yu8zithl497dnef1jpp0gv&st=r1iam07b&dl=0


H. Notes

Please contact the authors in case of any questions or issues.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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