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Abstract—Historically, improvement in GPU performance has
been tightly coupled with transistor scaling. As Moore’s Law
slows down, performance of single GPUs may ultimately plateau.
To continue GPU performance scaling, multiple GPUs can be
connected using system-level interconnects. However, limited
inter-GPU interconnect bandwidth (e.g., 64GB/s) can hurt multi-
GPU performance when there are frequent remote GPU memory
accesses. Traditional GPUs rely on page migration to service the
memory accesses from local memory instead. Page migration
fails when the page is simultaneously shared between multiple
GPUs in the system. As such, recent proposals enhance the
software runtime system to replicate read-only shared pages in
local memory. Unfortunately, such practice fails when there are
frequent remote memory accesses to read-write shared pages. To
address this problem, recent proposals cache remote shared data
in the GPU last-level-cache (LLC). Unfortunately, remote data
caching also fails when the shared-data working-set exceeds the
available GPU LLC size.

This paper conducts a combined performance analysis of state-
of-the-art software and hardware mechanisms to improve NUMA
performance of multi-GPU systems. Our evaluations on a 4-
node multi-GPU system reveal that the combination of work
scheduling, page placement, page migration, page replication, and
caching remote data still incurs a 47% slowdown relative to an
ideal NUMA-GPU system. This is because the shared memory
footprint tends to be significantly larger than the GPU LLC
size and can not be replicated by software because the shared
footprint has read-write property. Thus, we show that existing
NUMA-aware software solutions require hardware support to
address the NUMA bandwidth bottleneck. We propose Caching
Remote Data in Video Memory (CARVE), a hardware mechanism
that stores recently accessed remote shared data in a dedicated
region of the GPU memory. CARVE outperforms state-of-the-
art NUMA mechanisms and is within 6% the performance
of an ideal NUMA-GPU system. A design space analysis on
supporting cache coherence is also investigated. Overall, we show
that dedicating only 3% of GPU memory eliminates NUMA
bandwidth bottlenecks while incurring negligible performance
overheads due to the reduced GPU memory capacity.

Index Terms—GPU, Multi-GPU, Memory, NUMA, HBM,
DRAM-Cache, Coherence, Page-Migration, Page-Replication

I. INTRODUCTION

GPU acceleration has improved the performance of HPC
systems [1], [2], [3], [4] and deep learning applications [5],
[6], [7]. Historically, transistor scaling has improved single
GPU application performance by increasing the number of
Streaming Multiprocessors (SM) between GPU generations.
However, the end of Moore’s Law [8] necessitates alternative
mechanisms, such as multi-GPUs, to continue scaling GPU
performance independent of the technology node.

Fig. 1. Multi-GPU System: Low inter-GPU link bandwidth creates Non-
Uniform Memory Access (NUMA) bottlenecks.

Multi-GPU systems can speed up application performance
by offering 4-8x more computational resources than a single-
GPU [9]. Figure 1 illustrates a commercially available multi-
GPU system (e.g., DGX [9], [10]) consisting of four GPUs,
each with their own dedicated path to high-bandwidth local
GPU memory (e.g., 1 TB/s [11]), and interconnected using
inter-GPU links (e.g., NVLink [12]). However, due to physical
constraints, these inter-GPU links are likely to have 10-20x
lower bandwidth than local GPU memory bandwidth (e.g.,
64 GB/s compared to 1 TB/s). Consequently, while multi-
GPUs have the potential to provide substantially more compute
resources, the large bandwidth discrepancy between local
memory bandwidth and inter-GPU bandwidth contributes to
Non-Uniform Memory Access (NUMA) behavior that can often
bottleneck performance.

The NUMA bandwidth bottleneck is because the local
memory is unable to satisfy the majority of memory requests.
To address this problem, runtime systems can migrate pages
to the local memory. Unfortunately, such practice fails when a
page is concurrently accessed by multiple nodes in the system
(i.e., shared pages). In such situations, recent proposals enhance
the runtime system to replicate shared pages [13], [14] in the
local memory of each node. However, unbounded replication
can significantly increase GPU memory capacity pressure (on
average 2.4x in our studies). Since GPUs have limited memory
capacity due to memory technology and cost constraints [15],
we desire an alternate solution to reduce NUMA bottlenecks.

Recent work investigates software and hardware enhance-
ments to reduce NUMA performance bottlenecks. Specifically,
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Fig. 2. Performance of NUMA-GPU relative to an ideal paging mechanism that replicates ALL shared pages. There is still a significant performance gap due
to limited inter-GPU link bandwidth.

the authors propose work scheduling, first-touch page mapping,
and caching shared pages in the GPU cache hierarchy [16]. We
refer to this baseline system as NUMA-GPU. Figure 2 compares
the performance of NUMA-GPU, NUMA-GPU enhanced with
replicating read-only shared pages [13], [14] and an ideal upper-
bound NUMA-GPU system that replicates all (both read-only
and read-write) shared pages. The x-axis shows the different
workloads while the y-axis illustrates performance relative
to the ideal NUMA-GPU system that replicates all shared
pages. The figure shows that across the 20 workloads studied,
eight workloads experience negligible NUMA performance
bottlenecks. We also see that replicating read-only shared pages
removes NUMA performance bottlenecks for three workloads.
For the remainder of the workloads, the baseline NUMA-
GPU system experiences 20-80% slowdown that can only be
eliminated by replicating read-write shared pages as well.

Read-write pages manifest due to normal program semantics
or due to false-sharing when using large pages [17]1. While
read-write shared pages can be replicated, they must be
collapsed on writes to ensure data coherence. Unfortunately,
the software overhead of collapsing read-write shared pages
(even on occasional writes) can be prohibitively high [13].
Consequently, developing efficient software techniques to
reduce NUMA performance bottlenecks associated with read-
write pages is still an open problem.

Hardware mechanisms that cache shared pages in the GPU
cache hierarchy can also reduce the NUMA performance
bottleneck [16]. However, conventional GPU LLC sizes are
unable to capture the large shared application working-set size
of emerging workloads. To address the cache capacity problem,
recent papers [19], [20] propose using DRAM caches in multi-
node CPU systems. As such, we also investigate the feasibility
of architecting DRAM caches in multi-node GPU systems.

This paper investigates the limitations of combining state-of-
the-art software and hardware techniques to address the NUMA
performance bottleneck in multi-GPU systems. Overall, this
paper makes the following contributions:

1) We show that software paging mechanisms commonly
used on GPUs today fail to reduce the multi-GPU NUMA
performance bottleneck. Furthermore, we also show that
caching remote data in the GPU cache hierarchy has
limited benefits due to the large shared data footprint.
Thus, we show that GPUs must be augmented with large

1GPUs rely on large pages (e.g., 2MB) to ensure high TLB coverage. Reducing
the paging granularity to minimize false read-write sharing can cause severe
TLB performance bottlenecks [18].

caches to reduce NUMA overheads. To the best of our
knowledge, this is the first study that combines state-of-the-
art software and hardware techniques (to improve NUMA
performance bottlenecks) on a single NUMA platform
(i.e., a multi-GPU platform in our study).

2) We propose to augment NUMA-GPU with a practical
DRAM cache architecture that increases GPU caching
capacity by Caching Remote Data in Video Memory
(CARVE). CARVE dedicates a small fraction of the GPU
memory to store the contents of remote memory. In doing
so, CARVE transforms the GPU memory into a hybrid
structure that is simultaneously configured as OS-visible
memory and a large cache. CARVE only caches remote
data in the DRAM cache since there is no latency or
bandwidth benefit from caching local data.

3) We perform a detailed design space analysis on the
implications of DRAM cache coherence in multi-GPU
systems. Specifically, we find that conventional software
coherence mechanisms used in GPUs today do not scale
to giga-scale DRAM caches. This is because software
coherence frequently destroys the data locality benefits
from DRAM caches. Instead, we show that GPUs must be
extended with a simple hardware coherence mechanism
to reap DRAM cache benefits.

4) Finally, we show that the small loss in GPU memory
capacity due to CARVE can be compensated by allocating
pages in system CPU memory. In such situations, the use
of Unified Memory (UM) enables frequently accessed
pages to be migrated between system memory and GPU
memory. Thus, the performance impact of losing some
GPU memory capacity can be tolerable even in situations
where CARVE provides limited performance benefits.

Overall, this paper provides an important foundation for further
reducing NUMA bottlenecks on emerging multi-GPU platforms.
We perform detailed performance evaluations with state-of-the-
art work scheduling, software paging, hardware caching, and
CARVE on a multi-GPU system consisting of four GPUs. We
show that page migration, page replication, and CARVE incur
a 49%, 47%, and 6% respective slowdown relative to an ideal
NUMA-GPU system that satisfies all memory requests locally.
These results show that CARVE is imperative to continue
scaling NUMA-GPU performance. CARVE provides these
benefits by incurring only a 3% loss in GPU memory capacity.
Finally, we show that the loss in GPU memory capacity incurs
negligible performance overheads.
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TABLE I
CHARACTERISTICS OF RECENT NVIDIA GPUS.

Fermi Kepler Maxwell Pascal Volta
SMs 16 15 24 56 80
BW (GB/s) 177 288 288 720 900
Transistors (B) 3.0 7.1 8.0 15.3 21.1
Tech. node (nm) 40 28 28 16 12
Chip size (mm2) 529 551 601 610 815

II. BACKGROUND AND MOTIVATION

A. GPU Performance Scaling
Table I shows that GPU performance has scaled well over
the past decade due to increasing transistor density and GPU
memory bandwidth. For example, the recently announced Volta
GPU consists of 80 Streaming Multiprocessors (SMs) on a
large 815 mm2 chip consists of 21.1 billion transistors [2].
Unfortunately, the impending end of Moore’s Law [8], and
limitations in lithography and manufacturing cost [21] threaten
continued GPU performance scaling. Without larger or denser
dies, GPU architects must now investigate alternative techniques
for GPU performance scaling.

Recent advances in packaging [22], signaling [23], [24], and
interconnection technology [25], [26] enable new opportunities
for scaling GPU performance. For example, recent work
propose interconnecting multiple GPUs at a package-level [27]
or system-level [16] with high bandwidth interconnection
technology (e.g. GRS [26] or NVLink [12]). These multi-
GPU systems provide the programmer the illusion of a single
GPU system. However, they are non-uniform memory access
(NUMA) systems with asymmetric bandwidth to local and
remote GPU memory. As such, software and hardware tech-
niques have been proposed to reduce the NUMA bottlenecks.
We now discuss these techniques and identify their limitations.

B. NUMA-aware Multi-GPUs
Figure 3 illustrates a NUMA-GPU system where performance is
directly dependent on the available remote memory bandwidth.
Traditionally, application programmers have manually managed
the placement of both compute and data to ensure high NUMA
system performance. Such practice significantly increases
programmer burden and may not necessarily scale to alternate
NUMA systems. To reduce programmer burden, the recent
NUMA-GPU [16] proposal presents software and hardware
techniques to reduce NUMA bottlenecks, without the need for
programmer intervention.

NUMA-GPU enhances the GPU runtime by improving
the Cooperative Thread Array (CTA) scheduling and page
placement policy. Since adjacent CTAs tend to have significant
spatial and temporal locality, NUMA-GPU exploits inter-CTA
data locality by scheduling a large batch of contiguous CTAs to
each GPU. Furthermore, NUMA-GPU increases the likelihood
of servicing the majority of memory requests from the local
GPU memory by using a First-Touch (FT) page placement
policy. The FT policy allocates pages to the memory of the
GPU that first accessed that page. If a page were private, FT
mapping ensures that memory accesses are serviced locally.

If a page were already mapped in a remote GPU memory
(e.g. shared data), NUMA-GPU caches remote data in the GPU

Fig. 3. Organization and bandwidth of a NUMA-Aware Multi-GPU. Distributed
CTA-Scheduling and First-Touch Memory Mapping can improve data locality.

cache hierarchy to enable future references to be serviced at
high bandwidth. To ensure correctness, NUMA-GPU extends
existing software coherence mechanisms to the GPU LLC [28],
[29]. Figure 3 illustrates the software and hardware mechanisms
used by NUMA-GPU to reduce NUMA bottlenecks.

C. NUMA-GPU Performance Bottleneck

NUMA systems experience significant performance bottlenecks
when applications frequently access remote memory. A recent
study showed that remote memory accesses in NUMA systems
is because of false page sharing when using large page sizes
(e.g., to improve TLB coverage [17], [18]). To address the
false sharing problem, the runtime system (or OS) can replicate
shared pages locally to avoid remote memory accesses. Unfor-
tunately, page replication increases the application memory
requirements (on average 2.4x in our study). Thus, page
replication works best only when there are free memory pages
available. Since future GPU workloads are expected to entirely
fill GPU memory capacity [15], page replication is expected
to benefit only if the GPU memory is under-utilized.

Besides GPU memory capacity pressure, page replication is
only limited to read-only shared pages and not read-write shared
pages. This is because the software overhead of collapsing
read-write shared pages (even on occasional writes) can be
extremely expensive [13]. Thus, page-replication cannot reduce
remote memory accesses when a large fraction of remote
memory accesses are to read-write shared pages. To illustrate
this problem on the baseline NUMA-GPU system, Figure 4
shows the distribution of GPU memory accesses to private
pages, read-only shared pages, and read-write shared pages.
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Fig. 4. Distribution of memory accesses to private and shared pages at page
size and cache line granularity.
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Fig. 5. Total memory capacity (across 4-gpus) needed to cover application
shared working set size on a NUMA-GPU.

The figure shows that 40% (up to 100%) of GPU memory
accesses are serviced by read-write pages. Consequently, page
replication can not reduce NUMA bottlenecks when read-write
shared pages are frequently accessed.

To address the limitations of replicating read-write shared
pages, NUMA performance can be improved by caching shared
data in the on-chip last-level-cache (LLC) [16], [30]. To
quantify the total LLC space requirements, Figure 5 shows
the shared memory footprint for the different workloads. The
shared memory footprint represents the total number of unique
remote pages fetched by the different GPUs. The figure clearly
shows that caching remote data in the GPU LLC is unlikely
to benefit since the application shared memory footprint often
significantly exceeds the aggregate system LLC capacity.

A straightforward mechanism to fully cover the shared mem-
ory footprint would be to increase the total LLC capacity in the
system. However, Figure 5 shows that the system LLC capacity
must be drastically increased to fit the shared memory footprint
of most workloads. Unfortunately, semiconductor scaling does
not allow for such large LLCs to be incorporated on to high-
performance processor chips. Consequently, alternative low
overhead mechanisms are needed to increase the remote data
caching capacity of GPUs.

We investigate increasing the GPU caching capacity by
Caching Remote Data in Video Memory (CARVE), a hardware
mechanism that statically devotes a small fraction of the local
GPU memory to replicate remote shared data. CARVE reduces
the granularity of data replication from OS page granularity
(i.e., 2MB) to a finer granularity (i.e., 128B cacheline). To
ensure correct program execution, however, CARVE requires
an efficient mechanism to maintain coherence between multiple
GPUs. Thankfully, Figure 4 shows that coherence bandwidth
is expected to be small because the fine-grain replication
granularity results in a smaller distribution of memory accesses
to read-write shared data (further emphasizing the high degree
of false-sharing when using large page sizes). Before we
investigate increasing GPU caching capacity, we first discuss
our experimental methodology.

III. METHODOLOGY

We use an industry proprietary trace-driven performance
simulator to simulate a multi-GPU system with four GPUs inter-
connected using high bandwidth links. Each GPU in the system
has a processor and memory hierarchy similar to the NVIDIA
Pascal GPU [10]. We model 64 SMs per GPU that support
64 warps each. A warp scheduler selects warp instructions

TABLE II
WORKLOAD CHARACTERISTICS

Suite Benchmark Abbr. Mem footprint

HPC

AMG 32 AMG 3.2 GB
HPGMG-UVM HPGMG 2.0 GB

HPGMG-amry-proxy HPGMG-amry 7.7 GB
Lulesh-Unstruct-Mesh1 Lulesh 24 MB

Lulesh-s190 Lulesh-s190 3.7 GB
CoMD-xyz64 warp CoMD 910 MB
MCB-5M-particles MCB 254 MB
MiniAMR-15Kv40 MiniAMR 4.4 GB

Nekbone-18 Nekbone 1.0 GB
XSBench 17K grid XSBench 4.4 GB

Euler3D Euler 26 MB
SSSP SSSP 42 MB

bfs-road-usa bfs-road 590 MB

ML
AlexNet-ConvNet2 AlexNet 96 MB

GoogLeNet-cudnn-Lev2 GoogLeNet 1.2 GB
OverFeat-cudnn-Lev3 OverFeat 88 MB

Other

Bitcoin-Crypto Bitcoin 5.6 GB
Optix-Raytracing Raytracing 150 MB

stream-triad stream-triad 3.0 GB
Random Memory Access RandAccess 15.0 GB

each cycle. The GPU memory system consists of a multi-level
cache and TLB hierarchy. The first level of the cache and TLB
hierarchy are private to each SM, while the last level cache
and TLB are shared by all SMs. We assume software-based
cache coherence across the private caches that is commonly
used in state-of-the-art GPUs [10] today. Table III shows the
simulation parameters used in our baseline.

We assume our multi-GPU system is connected using
NVLink [12] technology with 64GB/s of bandwidth (in one-
direction). We also assume each GPU is interconnected to a
CPU using NVLink at 32GB/s. Our infrastructure also includes
a detailed DRAM system with 32GB of memory capacity per
GPU with 1TB/s of local GPU memory bandwidth. Each GPU
memory controller supports 128-entry read and write queues
per channel, open-page policy, minimalist address mapping
policy [31] and FR-FCFS scheduling policy (prioritizing reads
over writes). Writes are issued in batches when the write queue
starts to fill up.

We evaluate 20 CUDA benchmarks taken from many appli-
cations of interest: HPC applications [32], fluid dynamics [33],
graph search [34], machine learning, deep neural networks [4],
and medical imaging. We show the memory footprint of our
workloads in Table II. We simulate all of our workloads for
four billion warp-instructions.

TABLE III
BASELINE MULTI-GPU SYSTEM

Number of GPUs 4
Total Number of SMs 256
Max number of warps 64 per SM

GPU frequency 1GHz
OS Page Size 2MB
L1 data cache 128KB per SM, 128B lines, 4 ways
Total L2 cache 32MB, 128B lines, 16 ways

Inter-GPU interconnect 64 GB/s per link, uni-directional
CPU-GPU interconnect 32 GB/s per GPU
Total DRAM bandwidth 4 TB/s
Total DRAM capacity 128GB
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Fig. 6. Architecting a small fraction of GPU memory as a Remote Data
Cache (RDC) enables caching large remote data working-sets.

IV. INCREASING GPU CACHE CAPACITY

The NUMA bottleneck occurs when a large fraction of memory
accesses are serviced by remote memory over low-bandwidth
interconnection links [12], [35], [36]. While NUMA has been
well studied using conventional memory technology [14], [30],
[37], emerging high bandwidth memory technology enables a
novel solution space to tackle the NUMA problem. As such, we
investigate hardware mechanisms that dedicate a small fraction
of local memory to store the contents of remote memory. Doing
so enables the remote memory data to be serviced at high local
memory bandwidth. In the context of GPUs, this approach
effectively increases the caching capacity of a GPU.

A. Caching Remote Data in Video Memory

We propose Caching Remote Data in Video Memory (CARVE),
a hardware mechanism that statically reserves a portion of the
GPUs on-package local memory to store remote data. Since
there is no latency or bandwidth advantage to duplicating local
memory data, CARVE only stores remote data in the carve-out.
We refer to this memory region as a Remote Data Cache (RDC)
(see Figure 6). To avoid software overheads, the RDC is entirely
hardware-managed and invisible to the programmer and GPU
runtime system. The amount of GPU memory dedicated for
the RDC can be statically set at system boot time (or kernel
launch time if only a single kernel is executing on the GPU).
Thus, CARVE transforms the local GPU memory into a hybrid
structure that is simultaneously configured both as software
visible memory and a hardware-managed cache.

CARVE requires minimal changes to the existing GPU
design. On a GPU LLC miss, the GPU memory controller
determines whether the missing memory address will be
serviced by the local GPU memory or a remote GPU memory. If
the request maps to the local GPU memory, the data is fetched
directly from local memory and sent to the LLC. Otherwise,
the memory controller first checks to see if the data is available
in the RDC. In the event of a RDC hit, the data is serviced
locally without incurring the bandwidth and latency penalty
of a remote GPU memory access. However, in the event of
an RDC miss, the missing data is retrieved from the remote

DRAM ARRAY

2 KB Row Buffer (plus ECC) =

144B = 128-byte Data + 9-byte ECC + 7-byte (Tag+Metadata) 

ADDR

DATA(128B)

TAG AND DATA (TAD)

ECC(9B) + TAG(7B) = (16B)

ROW BUFFER

16 x 144 byte TAD = 16 lines

Fig. 7. Alloy Cache stores tags with data to enable low latency access. Tags can
be stored alongside ECC bits to simplify data alignment and cache controller.

GPU memory and returned to the LLC. The missing data is
also inserted into the RDC to enable future hits.2

Remote Data Cache (RDC) Design: The RDC is architected
at a fine (e.g. 128B) granularity to minimize false sharing (see
Figure 4). In our study, we model the RDC as a fine grain
Alloy cache [39] (see Figure 7), which organizes its cache as
a direct-mapped structure and stores Tags-with-Data. In Alloy,
one access to the cache retrieves both the tag and the data.
If the tag matches (i.e., a cache hit), the data is then used
to service the request. Otherwise, the request is forwarded to
the next level of memory. We implement Alloy by storing the
tag in spare ECC bits3, similar to commercial implementation
today [40]. Note that RDC is not only limited to the Alloy
design and can also be architected using alternate DRAM cache
architectures [39], [41], [42].

When GPU memory is configured with an RDC, CARVE
requires a single register in the GPU memory controller to
specify starting location (i.e., physical address) for the RDC.
CARVE also requires simple combinational logic to identify the
physical GPU memory location for a given RDC set. Finally,
since the RDC is architected in local GPU memory, the different
RDC sets are interleaved across all GPU memory channels to
ensure high bandwidth concurrent RDC accesses.

Remote Data Cache Evaluation: We evaluate the benefits of
CARVE by using a 2GB RDC. This amounts to 6.25% of the
baseline 32GB GPU memory dedicated as an RDC and the

2The RDC can also store data from System Memory. However, this requires
additional support for handling CPU-GPU coherence [38].

3We assume GPU memory uses HBM technology. HBM provides 16B of ECC
to protect 128B of data. Assuming ECC at a 16-byte granularity (enough
to protect bus transfers), SECDED requires 8*9=72 bits to protect the data.
This leaves 56 spare ECC bits that can be used for tag and metadata (RDC
only requires 6 bits for tags).
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Fig. 9. CARVE performance with zero overhead cache coherence. CARVE is able to achieve Ideal-NUMA-GPU speedup.

remaining 93.75% exposed as operating system (OS) managed
memory (30GB per GPU).

RDC Effect on NUMA Traffic: Figure 8 shows the fraction
of remote memory accesses with NUMA-GPU and NUMA-
GPU enhanced with CARVE. The figure shows that many
workloads on the baseline NUMA-GPU system still suffer
more than 70% remote memory accesses (e.g., XSBench and
Lulesh). This is because the shared memory footprint of these
workloads is larger than the GPU LLC. CARVE on the other
hand significantly reduces the fraction of remote memory
accesses. On average, NUMA-GPU experiences 40% remote
memory accesses while CARVE experiences only 8% remote
memory accesses. In doing so, CARVE efficiently utilizes
local unused HBM bandwidth. Consequently, the figure shows
that CARVE can significantly reduce the inter-GPU bandwidth
bottleneck for most workloads.

RDC Performance Analysis (Upper Bound): We first eval-
uate the performance potential of CARVE by assuming zero-
overhead cache coherence between the RDCs (called CARVE-
No-Coherence). This enables us to quantify the benefits of
servicing remote GPU memory accesses in local GPU memory.
We investigate coherence in the next subsection.

Figure 9 shows the performance of NUMA-GPU, NUMA-
GPU with software page replication of read-only shared pages,
CARVE-No-Coherence, and an ideal NUMA-GPU system that
replicates all shared pages. The x-axis shows the different
workloads, and the y-axis shows the performance relative
to the ideal NUMA-GPU system. The figure shows that
CARVE enables workloads like Lulesh, Euler, SSSP and
HPGMG (which experience significant slowdown with NUMA-
GPU and NUMA-GPU enhanced with read-only shared page
replication) to approach the performance of an ideal NUMA-
GPU system. This is because these workloads experience a
20-60% reduction in remote memory accesses (see Figure 8).
This shows that extending the remote data caching capacity
into the local GPU memory by using a Remote Data Cache
(RDC) significantly reduces the NUMA bandwidth bottleneck.
CARVE provides these performance improvements without
relying on any software support for page replication.

While CARVE improves performance significantly across
many workloads, CARVE can sometimes degrade performance.
For example, RandAccess experiences a 10% performance
degradation due to frequent misses in the RDC. The ad-

ditional latency penalty of first accessing the RDC then
accessing remote memory can degrade performance of latency-
sensitive workloads. However, using low-overhead cache
hit-predictors [39] can mitigate these performance outliers.
Overall, Figure 9 shows that CARVE significantly bridges
the performance gap between NUMA-GPU and an ideal
NUMA-GPU system. On average, the baseline NUMA-GPU
system and NUMA-GPU enhanced with read-only shared page
replication experience a 50% performance gap relative to the
ideal NUMA-GPU system. On the other hand, CARVE-No-
Coherence experiences only a 5% performance gap relative to
an ideal NUMA-GPU system that replicates all shared pages.
These results show significant performance opportunity from
CARVE provided we can efficiently ensure data coherence
between the RDCs.

B. Coherence Implications of an RDC in GPUs

CARVE has the potential to significantly improve NUMA-GPU
performance by reducing most of the remote memory accesses.
However, since each Remote Data Cache (RDC) stores a copy
of remote GPU memory, an efficient mechanism is necessary to
keep the copies coherent. Fortunately, the GPU programming
model provides the programmer with an API to explicitly
insert synchronization points to ensure coherent data access.
Thus, since software coherence [28] is already supported on
conventional GPU systems, we first investigate whether CARVE
can be easily extended with software coherence.

Software Coherence
Conventional GPU designs maintain software coherence at
kernel boundaries by enforcing two requirements. First, at the
end of each kernel call, modified data is written back to memory
(i.e., flush dirty data). Second, at the beginning of the next
kernel invocation, the GPU cores must read the updated values
from memory. Conventional GPUs enforce these requirements
by implementing a write-through L1 cache that is invalidated
at every kernel boundary, and a memory-side last-level cache
that is implicitly coherent.

TABLE IV
KERNEL-LAUNCH DELAY UNDER SOFTWARE COHERENCE

L2 Cache (8MB) RDC (2GB)
Cache Invalidate 8MB, 16 bank, 1/cycle: 2GB, 1024GB/s local:

4us 2ms =>0ms
Flush Dirty 8MB, 1024-64GB/s: 2GB, 64GB/s remote:

8us˜128us 32ms =>0ms
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Fig. 10. Epoch-counter based invalidation eliminates the penalty of explicitly
invalidating the whole remote data cache.

NUMA-GPUs cache remote data in the GPU LLC and extend
software coherence to the GPU LLC by also invalidating the
LLC on kernel boundaries [16]. Similarly, RDC coherence can
be ensured by further extending software-coherence mecha-
nisms to the RDC. Thus, on every kernel boundary, the memory
controller would also invalidate all RDC entries and write back
dirty data (if any) to remote GPU memory. Table IV compares
the worst case software coherence overhead for RDC and on-
chip LLCs. The table shows that invalidating and flushing dirty
data in on-chip LLCs tends to be on the order of microseconds
and can be tolerated within kernel launch latency. On the
other hand, the overhead of invalidating and writing back
millions of RDC lines can take on the order of milliseconds.
Incurring millisecond latency at every kernel boundary can
significantly impact application performance. Consequently,
we desire architecture support for efficiently invalidating and
writing back RDC lines.

Efficient RDC Invalidation: Since the RDC tag, valid, and
dirty bits are all stored in GPU memory, invalidating all RDC
lines requires reading and writing GPU memory. Depending
on the RDC size, RDC invalidation can be a long latency and
bandwidth intensive process. Alternatively, we do not need
to physically invalidate all of the lines. We simply need to
know if the RDC data is stale (i.e., from a previous kernel and
should be re-fetched) or up-to-date (i.e., from current kernel
and can be used). If we track the epoch an RDC cacheline was
installed in, we can easily determine if the RDC data is stale
or not. Thus, an epoch-counter-based invalidation scheme is
used to invalidate the RDC instantly (i.e., 0 ms) [43], [44].

Figure 10 shows our RDC invalidation mechanism. We use
a 20-bit register to maintain an Epoch Counter (EPCTR) for
each kernel/stream running on the GPU. RDC insertions store
the current EPCTR value of the kernel/stream with each RDC
cacheline (in the ECC bits along with the RDC Tag). By
doing so, RDC hits only occur if the tag matches and if the
EPCTR stored within the RDC cacheline matches the current
EPCTR value of the associated kernel/stream. To support
efficient RDC invalidation at kernel boundaries, we simply
increment the EPCTR of the appropriate kernel. Thus, the
RDC hit logic ensures that the newly launched kernel does not
consume a previous kernels’ stale data. In the rare event that
the EPCTR rolls over on an increment, the memory controller
physically resets all RDC cachelines by setting the valid bit
and EPCTR to zero. Note that an RDC architected in dense

DRAM technology enables large counters per RDC line that
otherwise were impractical with similar mechanisms applied
to on-chip caches [43], [44].

Efficient RDC Dirty Data Flush: We also desire an efficient
mechanism to flush dirty lines to remote GPU memory at kernel
boundaries. For a writeback RDC, we would need to know
which RDC lines must be flushed. Since our RDC invalidation
mechanism no longer requires physically reading all RDC lines,
an alternate mechanism is necessary to locate dirty RDC lines.
We can use a dirty-map [45], which tracks RDC regions that
have been written to. On a kernel boundary, the dirty-map can
be used to determine which RDC regions should be flushed to
remote GPU memory. To avoid the on-chip storage overhead
for the dirty-map, we propose a write-through RDC instead.
Doing so ensures that dirty data is immediately propagated to
remote GPU memory. Note that the write bandwidth to remote
GPU memory with a write-through RDC is identical to the
baseline NUMA-GPU configuration with no RDC.

Our evaluations with writeback (with dirty-map) and write-
through RDC showed that a write-through RDC performs nearly
as well (within 1% performance) as a write-back RDC. This
is because the vast majority of remote data cached in the line
granularity RDC tends to be heavily read-biased (see Figure 4).
Consequently, for the remainder of this work, we assume a
write-through RDC to enable zero-latency dirty data flush and
avoid the complexity of maintaining a write-back RDC.

Software Coherence Results: We now evaluate performance
of extending software coherence to the RDC. We refer to this
design as CARVE with Software Coherence (CARVE-SWC).
Figure 11 compares the performance of CARVE-SWC to
CARVE with no coherence overhead (CARVE-No-Coherence).
The figure shows that CARVE-SWC enables XSBench to
perform similar to CARVE-No-Coherence. However, despite
eliminating all overheads to maintain software coherence for
large caches, CARVE-SWC removes all performance benefits
of RDC for the remaining workloads. Since the only difference
between CARVE-No-Coherence and CARVE-SWC is the
flushing of the RDC between kernels, these results suggest
significant inter-kernel data locality that is exploited by CARVE-
No-Coherence. While this motivates further research work on
improving CARVE-SWC by efficiently prefetching remote
data at kernel boundaries, this is out of the scope of this paper.
Instead, we now investigate hardware coherence mechanisms
that do not require flushing the RDC at kernel boundaries.

Hardware Coherence
CARVE-SWC results reveal that it is important to retain
RDC data across kernel boundaries. While software coherence
can potentially be relaxed to avoid flushing the RDC, it
would require additional complexity for maintaining a software
directory to track stale copies of shared data cached remotely
and invalidate them explicitly. Since similar functionality is
available in conventional hardware coherence mechanisms, we
investigate extending the RDC with hardware coherence instead.
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Fig. 11. Performance of CARVE with software coherence and hardware coherence. Software coherence eliminates all of the benefits that CARVE offer.
Hardware coherence enables CARVE to reduce NUMA performance bottlenecks.

Since we desire a simple hardware coherence mechanism with
minimal design complexity, we augment our RDC design with
the simple GPU-VI cache coherence protocol [46].

GPU-VI is a directory-less protocol that implements (a)
write-through caches and (b) broadcasts write-invalidates to
all remote caches on store requests. Unfortunately, sending a
write-invalidate on every store request can significantly increase
network traffic in the system. In general, write-invalidates
are only required for read-write shared cachelines and can
be avoided for private read-write cachelines. Thus, write-
invalidate traffic can be reduced by identifying read-write
shared cachelines. To that end, we dynamically identify read-
write shared cachelines using an In-Memory Sharing Tracker
(IMST) for every memory location at a cacheline granularity.
We propose a 2-bit IMST that is stored in the spare ECC
space of each cacheline at the home node. Figure 12 shows the
four possible states tracked by the IMST: uncached, private,
read-shared, and read-write shared.

Figure 12 also shows the possible transitions between the
different sharing states of a cacheline. These transitions are
performed by the GPU memory controller on reads and writes
from local and remote GPUs. For example, a remote read
transitions the sharing state to read-shared. Similarly, a remote
write transitions the state to read-write shared. Since the IMST
tracks the global sharing behavior of a cacheline, a cacheline
can perpetually stay in the read-write shared or read-shared
state. To avoid this problem, we probabilistically (e.g., 1%)
transition the sharing state to private on local GPU writes
(after broadcasting invalidates). Note that the IMST differs
from conventional cache coherence states like MESI/MOESI
which track the instantaneous cacheline state during residency
in the cache. The IMST on the other hand monitors the global
sharing behavior of a cacheline beyond cache residency.

Local Read/Write or
Remote Read/Write

Remote Read

Local Read/Write
Local/Remote Read

Local/Remote Write

Read-only or read-write line
only used by local GPU

Read-only line shared 
by multiple GPUs

Read-write line
shared by multiple GPUsUn-cached line

private

Remote WriteRemote Read

Local Write

Local Write RW-
shared

R-
shared

Probabilistic Update to track
dynamic cacheline behavior

Remote Write

un-
cached

Local Read/Write

Fig. 12. In-Memory Sharing Tracker (IMST). Identifying read-write shared
cachelines reduces write-invalidate traffic in GPU-VI. The IMST is stored
in-memory at a cacheline granularity in spare ECC bits at the home node.

We refer to RDC extended with GPU-VI coherence and
IMST as CARVE with Hardware Coherence (CARVE-HWC).
CARVE-HWC leverages the IMST to avoid write-invalidates
for private cachelines. When the GPU memory controller at
the home node receives a write request, it consults the IMST
to determine the sharing properties of the cacheline. To avoid
bandwidth and latency for reading an IMST entry, we store
a copy of the IMST-entry along with the cacheline in the
GPU cache hierarchy. Thus, when the IMST-entry identifies
the cacheline as private, a write-invalidate broadcast is avoided.
However, if the cacheline is detected to be in read-write sharing
state, a write-invalidate broadcast is generated. In our work, we
find that CARVE-HWC introduces negligible write-invalidate
traffic from read-write shared lines since the fine grain RDC
enables the majority of memory accesses to reference either
private data or read-only shared data (as evident from Figure 4).

Hardware Coherence Results: Figure 11 shows that CARVE-
HWC restores RDC benefits lost under CARVE-SWC (e.g.,
Lulesh, Euler, and HPGMG). In fact, CARVE-HWC nears
ideal system performance which replicates all shared pages.

C. CARVE Summary

CARVE significantly improves NUMA-GPU performance by
extending the caching capacity of the GPU cache hierarchy.
However, CARVE requires an efficient and high-performance
cache coherence mechanism to ensure correct data execution.
Our investigations in this section show that conventional
software coherence mechanisms do not scale with increasing
GPU caching capacity. This is because flushing the cache
hierarchy between kernel boundaries removes all inter-kernel
data locality benefits offered by a high capacity cache hierarchy.
Consequently, we find that hardware coherence is necessary to
reap the performance benefits of a high capacity GPU cache
hierarchy. Our performance evaluations corroborate with results
from previous work on GPU L1 caches [47], [48], [49] and
conclude that implementing hardware coherence may be a
worthwhile endeavor in future NUMA-GPU systems.

V. RESULTS AND ANALYSIS

Thus far we have shown CARVE can significantly improve
NUMA-GPU performance. However, the performance of
NUMA-GPU enhanced with CARVE depends on the Remote
Data Cache size, the NUMA-bandwidth differential between

8



0.00

1.00

2.00

3.00

4.00

5.00
P

e
rf

 R
e
la

ti
v
e
 t

o
 S

in
g

le
 G

P
U

NUMA-GPU NUMA-GPU + Replicating-ReadOnly-SharedPages CARVE-HWC NUMA-GPU + Replicating-ALL-SharedPages (Ideal)

Fig. 13. Performance comparison of CARVE with software support for replicating shared pages. CARVE outperforms read-only shared page replication and
nears the performance of an ideal NUMA-GPU system that replicates all pages locally.

local and remote nodes, as well as the potential impact of
forcing some application data into the slower system memory
(to make room for the Remote Data Cache). This section
analyzes the trade-offs associated with these issues, as well as
explores the performance sensitivity of our proposals to each
of these factors. For the remainder of this section, we only
present CARVE-HWC since it performs the best.

A. Results Summary

Figure 13 compares the performance of NUMA-GPU, NUMA-
GPU enhanced with page replication of read-only shared
pages, NUMA-GPU enhanced with CARVE, and an ideal
NUMA-GPU system that replicates all shared pages. The x-
axis shows the different workloads while the y-axis represents
the performance speedup relative to a single GPU. Overall, we
observe that the baseline NUMA-GPU system only achieves
a 2.5x speedup relative to a single-GPU system. NUMA-
GPU enhanced with software support to replicate read-only
shared pages achieves a 2.75x speedup. However, NUMA-
GPU enhanced with CARVE outperforms both systems by
providing a 3.6x speedup. This is because CARVE services the
contents of remote read-only and read-write shared pages from
the local GPU memory. In doing so, NUMA-GPU enhanced
with CARVE nears the performance of an ideal NUMA-GPU
system that provides a 3.7x speedup. These results show
that CARVE significantly improves NUMA-GPU performance
without relying on any software support for page replication.

B. Sensitivity to Remote Data Cache Size

With any caching proposal, the question of appropriate cache
size comes into question, particularly in a proposal like CARVE
where the cache capacity could be sized to consume as little
or as much of the GPU memory size. Table V(a) sheds light
on this question by illustrating the performance sensitivity of
CARVE across a variety of remote data cache (RDC) sizes,
where NUMA speed-up is multi-GPU speed-up relative to a
single-GPU system. We investigate four RDC sizes per GPU:
0.5GB, 1GB, 2GB, and 4GB. On average, we observe that
CARVE has minimal sensitivity to RDC size suggesting that
dedicating only 1.5% of total GPU memory capacity to remote
data caches (i.e. 2GB total out of 128GB total capacity in
our system) can improve performance an additional 38% over
an existing NUMA-GPU. However, we observed that some
workloads like XSBench, MCB, and HPGMG can observe an
additional 40-75% speedup when using an aggregate 8GB

RDC. This suggests that a runtime mechanism to decide the
appropriate RDC size will be an important factor for further
multi-GPU performance optimization.

C. Impact of GPU Memory Capacity Loss

NUMA-GPUs enable scaling unmodified GPU applications
across multiple GPUs without requiring any programmer
involvement. Since the application footprint remains the same
despite scaling across multiple GPUs, the aggregate system
has an abundance of available on-package GPU memory
capacity. Consequently, carving out a small fraction of local
GPU memory has no impact on the application’s ability to
fit inside the memory of the NUMA-GPU. However, when
application designers optimize their workloads for NUMA-GPU
systems and increase their workload footprints to maximize all
available GPU memory capacity, this condition may no longer
hold true. When generalizing the CARVE proposal to multi-
GPU systems where the application is hand optimized in both
application footprint and memory placement, CARVE may in
fact force some fraction of the application footprint to spill into
system memory, resulting in GPU memory over-subscription
that must be handled by software managed runtime systems
like NVIDIA’s Unified Memory [15].

To quantify this phenomenon, Table V(b) shows the geomet-
ric mean slowdown across all workloads when 0%, 1.5%, 3%,
6%, and 12%, of the application memory footprint is placed
in system memory under a Unified Memory like policy. We
observe that on average, a small GPU memory carve-out (1.5%)
has minimal performance degradation (1%) while increased
RDC sizes begin to substantially hurt workload throughput. The
performance of software based paging systems between system
memory and GPU memory is an active area of research with
performance improving rapidly [38], [50]. Because software
paging between system memory and GPU memory focuses
on the cold end of the application data footprint, while
CARVE focuses on the hottest shared portion, we believe

TABLE V
PERFORMANCE SENSITIVITY TO RDC SIZE

Aggregate (a) NUMA (b) Slowdown
Memory Speed-up due to

Carve-Out (over 1-GPU) Carve-Out
NUMA-GPU 0.00% 2.53x 1.00x

CARVE-0.5GB 1.5% 3.50x 0.96x
CARVE-1GB 3.12% 3.55x 0.94x
CARVE-2GB 6.25% 3.61x 0.83x
CARVE-4GB 12.5% 3.65x 0.76x

9



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

32GB/s 64GB/s 128GB/s 256GB/s

S
p

e
e

d
u

p

Baseline Replicate-ReadOnly CARVE Replicate-All (Ideal)

(default config)

Fig. 14. Performance sensitivity of NUMA-GPU to different inter-GPU link
bandwidths normalized to single GPU. We illustrate baseline NUMA-GPU,
NUMA-GPU enhanced with replicating read-only shared pages, CARVE, and
an ideal system that replicates all shared pages.

these techniques may remain largely orthogonal, though clearly
they may have some intersection in implementation.

Taking these trade-offs into account we conclude that
CARVE is likely to be a worthwhile trade-off in the face of
growing NUMA effects in multi-GPU systems. While CARVE
has a high potential for reducing NUMA traffic, CARVE
may degrade performance in situations where the entire GPU
memory is required by the application. Similar to dynamic
caching solutions, better understanding of this trade-off and
how rapidly the dynamic balance between these two opposing
forces can be balanced will be key to designing an optimal
multi-GPU memory system.

D. Sensitivity to Inter-GPU Link Bandwidth

Inter-GPU link bandwidth is one of the largest performance
critical factors in future multi-GPU systems. While GPU to
GPU connections continue to improve [12], [51], ultimately
the link bandwidth between GPUs will always trail the local
GPU memory bandwidth. To understand the importance of
remote data caching as the ratio of inter-GPU to local memory
bandwidth changes, we examine the performance gains of
CARVE under a variety of inter-GPU bandwidths in Figure 14.
In the figure, x-axis varies the single direction inter-GPU
link bandwidth while the y-axis illustrates geometric mean
of speedups across all workloads evaluated in this study.

We observe that, the baseline NUMA-GPU performance
depends directly on the available inter-GPU link bandwidth.
This is because existing NUMA-GPU design (despite caching
remote data in the GPU LLC) is unable to entirely capture the
shared working set of most workloads. Conversely, CARVE
results in a system that is largely insensitive to a range of
NUMA-GPU bandwidths, performing very close to an ideal-
NUMA-GPU with infinite NUMA bandwidth in all cases. This
is because CARVE dedicates local memory space to store
remote data, and hence converts nearly all remote accesses to
local accesses. In doing so, CARVE eliminates the NUMA
bottleneck with a minor decrease in GPU memory capacity.

As multi-GPU systems scale, the NUMA-bandwidth avail-
able is unlikely to grow at the same rate as local memory
bandwidth. Despite improvements in high speed signaling
technology [26], there simply is not enough package perimeter
available to enable linear scaling of NUMA bandwidth when
doubling or quadrupling the number of closely coupled GPUs in

a system. So, while CARVE is still able to improve performance
as the ratio of NUMA to local memory bandwidth grows, it is
worth noting that CARVE’s relative performance will actually
increase, should the NUMA link get slower relative to local
memory bandwidth (as shown by moving from 64GB/s to
32GB/s links in Figure 14).

E. Scalability of CARVE

NUMA-GPU problems exacerbate as the number of nodes
in a multi-GPU system increase. In such situations, CARVE
can scale to arbitrary node counts by caching remote shared
data locally in the RDC. Since the addition of each GPU
node increases total GPU memory capacity, the total memory
capacity loss from CARVE is minimal. However, increasing
node counts require an efficient hardware coherence mechanism.
A directory-less hardware coherence mechanism (like the one
used in this paper) can incur significant network traffic overhead
for large multi-node systems that experience frequent read-write
sharing. In such scenarios, a directory-based hardware coher-
ence mechanism may be more efficient [19], [20]. Depending
on the workload sharing behavior, this suggests continued
research on efficient hardware coherence mechanisms in multi-
node CARVE-enabled GPU systems.

VI. RELATED WORK

Before drawing conclusions we now compare our work to
existing work on multi-GPUs, Non-Uniform Memory Access,
and giga-scale DRAM cache architectures.

A. Multi-GPUs Systems and Optimization

Multi-GPUs are already used to scale GPU performance for a
wide range of workloads [5], [6], [7], [32]. A common method
is to use system-level integration [3], [4], [9], [10]. Multi-node
GPU systems have also been studied and are employed in
the context of high-performance computing and data-center
applications [52], [53], [54], [55]. However, programming multi-
GPU systems require explicit programmer involvement using
software APIs such as Peer-2-Peer access [56] or a combination
of MPI and CUDA [57]. This paper explores a transparent
Multi-GPU approach that enables a multi-GPU to be utilized as
a single GPU (which enables running unmodified single-GPU
code) and uses hardware and driver level support to maintain
performance [16], [58], [59], [60].

B. Techniques to Reduce NUMA Effects

Existing work has also investigated caching remote data in
local caches to reduce NUMA traffic. CC-NUMA [30], S-
COMA [14], Reactive NUMA [37] use different mechanisms
and granularity for caching remote memory in on-chip caches.
CC-NUMA stores remote data in fine-granularity on-chip
caches, S-COMA stores remote data at page-granularity in
memory with software support, and R-NUMA switches between
fine-granularity and page-granularity.

Our work has a similar goal to prior NUMA proposals
as we also target reducing remote traffic by storing remote

10



memory contents locally. However, we find that shared working-
set sizes are much larger than conventional GPU last-level
caches. Unfortunately, semiconductor scaling will not allow for
larger on-chip caches to be incorporated into high-performance
processor chips. Additionally, we desire to reduce programmer
effort in software-based page replication. Our insight is that we
can dedicate a portion of the existing GPU memory to store the
contents of remote memory. CARVE can be implemented with
minimal additional hardware while maintaining programmer
and software transparency.

Software page replication can reduce NUMA effects by
replicating pages on each remote node [13], [14]. Carrefour [13]
proposes to solve NUMA problems with software-based page
replication and migration. If accesses are heavily read biased
(>99%), it uses page replication to service requests to shared
data. If there is heavy memory imbalance, it uses page migration
to maintain similar bandwidth out of all memories. While
software-based techniques can work, they rely on software
support for page protections. Changing page protection of
shared pages can incur high latency to collapse the replicated
pages [13]. Finally, page replication can significantly reduce
GPU memory capacity, which tends to be limited and costly.

C. DRAM Cache Architectures

Emerging high bandwidth memory technology have enabled
DRAM caches to be an important research topic [39], [41],
[42], [61], [62]. Such work typically targets heterogeneous
memory systems where a high bandwidth memory technology
(e.g. HBM) is used to cache low bandwidth, denser memory
technology (e.g. DDR, PCM, 3DXPoint [63]). Our work on
the other hand targets a GPU system that consists of a single
memory technology (e.g., HBM, GDDR). Specifically, we
transform the conventional GPU memory into a hybrid structure
that is simultaneously configured as OS-visible memory as well
as a data store for frequently accessed remote shared data.

DRAM Caches have also seen industry application with
the High-Bandwidth Cache-Controller (HBCC) in the AMD
Vega system [64] and MCDRAM in the Intel Knights
Landing (KNL) system [40]. AMD’s HBCC also supports video
memory to be configured as a page-based cache for system
memory. KNL uses a high-bandwidth memory technology
called MCDRAM and allows the user to statically configure
MCDRAM as cache, memory, or some combination of both.
The purpose of HBCC and MCDRAM is to reduce accesses
to the next level in the heterogeneous memory hierarchy (e.g.,
DDR or PCM). While CARVE has design similarities to
MCDRAM, CARVE is designed to reduce inter-GPU remote
memory accesses and must also consider inter-GPU coherence.

To ensure correct execution of multi-GPU applications,
CARVE also requires support for maintaining coherence.
Existing approaches CANDY [19] and C3D [20] propose
coherent DRAM caches for multi-socket CPU systems. These
proposals target maintaining coherence for HBM-based caches
in front of traditional DIMM-based memory. CANDY proposes
a full coherence directory in the DRAM-cache and caching
coherence entries in an on-die coherence directory. C3D

proposes a clean DRAM cache to simplify coherence and
reduce the latency of coherent memory accesses. CARVE on
the other hand extends elements of these existing coherence
proposals to a multi-GPU system and also proposes architecture
support for extending software coherence.

VII. CONCLUSIONS

GPU performance has scaled well over the past decade due
to increasing transistor density. However, the slowdown of
Moore’s Law poses significant challenges for continuous GPU
performance scaling. Consequently, multi-GPU systems have
been proposed to help meet the insatiable demand for GPU
throughput and are commonly used in HPC, data center, and
even workstation class machines. For many workloads, multi-
GPU execution means taking a leap of faith and re-writing the
GPU application to support multi-GPU communications, only
then to profile and optimize the application to avoid NUMA
performance bottlenecks. With the advent of transparent multi-
GPU technology, where a single application is spread across
multiple GPUs for execution, NUMA effects on GPUs may
impact all GPU workloads, not just those explicitly optimized
for NUMA-GPU systems.

NUMA performance bottlenecks are primarily due to
frequent remote memory accesses over the low bandwidth
interconnection network. Significant research has investigated
software and hardware techniques to avoid remote memory
accesses. Our evaluations on a multi-GPU system reveal that the
combination of page migration, page replication, and caching
remote data still incurs significant slowdown relative to an
ideal NUMA GPU system. This is because the shared memory
footprint tends to be much larger than the GPU LLC and can
not be replicated by software because the shared footprint
has read-write property. Thus, we show that GPUs must be
augmented with large caches to improve NUMA performance.
We investigate a hardware mechanism that increases GPU
caching capacity by storing recently accessed remote shared
data in a dedicated region of the GPU memory. We show
that this mechanism can significantly outperform state-of-the-
art software and hardware mechanisms while incurring only
a minor cost to GPU memory capacity. We then investigate
the implications of maintaining GPU cache coherence when
increasing the GPU caching capacity. Interestingly, we find
that conventional GPU software coherence does not scale to
large GPU caches. As such, we show that hardware coherence
is necessary to reap the full benefits of increasing GPU caching
capacity. Overall, we show that caching remote shared data in a
dedicated region of the GPU memory can improve multi-GPU
performance within 6% of an ideal multi-GPU system, while
incurring negligible performance impact due to the loss in GPU
memory capacity.
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