
Fundamental Latency Trade-offs in Architecting DRAM Caches∗

Outperforming Impractical SRAM-Tags with a Simple and Practical Design

Moinuddin K. Qureshi Gabriel H. Loh
Dept. of Electrical and Computer Engineering AMD Research

Georgia Institute of Technology Advanced Micro Devices, Inc.

moin@gatech.edu gabe.loh@amd.com

Abstract

This paper analyzes the design trade-offs in architecting
large-scale DRAM caches. Prior research, including the re-
cent work from Loh and Hill, have organized DRAM caches
similar to conventional caches. In this paper, we contend that
some of the basic design decisions typically made for con-
ventional caches (such as serialization of tag and data ac-
cess, large associativity, and update of replacement state) are
detrimental to the performance of DRAM caches, as they ex-
acerbate the already high hit latency. We show that higher
performance can be obtained by optimizing the DRAM cache
architecture first for latency, and then for hit rate.

We propose a latency-optimized cache architecture, called
Alloy Cache, that eliminates the delay due to tag serializa-
tion by streaming tag and data together in a single burst. We
also propose a simple and highly effective Memory Access
Predictor that incurs a storage overhead of 96 bytes per core
and a latency of 1 cycle. It helps service cache misses faster
without the need to wait for a cache miss detection in the com-
mon case. Our evaluations show that our latency-optimized
cache design significantly outperforms both the recent pro-
posal from Loh and Hill, as well as an impractical SRAM
Tag-Store design that incurs an unacceptable overhead of
several tens of megabytes. On average, the proposal from
Loh and Hill provides 8.7% performance improvement, the

“idealized” SRAM Tag design provides 24%, and our simple
latency-optimized design provides 35%.

1. Introduction

Emerging 3D-stacked memory technology has the potential
to provide a step function in memory performance. It can
provide caches of hundreds of megabytes (or a few gigabytes)
at almost an order of magnitude higher bandwidth compared
to traditional DRAM; as such, it has been a very active re-
search area [2, 4, 7, 12, 13, 19]. However, to get performance
benefit from such large caches, one must first handle several
key challenges, such as architecting the tag store, optimizing
hit latency, and handling misses efficiently. The prohibitive
overhead of storing tags in SRAM can be avoided by placing
the tags in DRAM, but naively doing so doubles the latency

∗The work on Memory Access Prediction (Section 5) was done in 2009
while the first author was a research scientist at IBM Research [15].

of DRAM cache (one access each for tag and data). A recent
work from Loh and Hill [10, 11] makes the tags-in-DRAM ap-
proach efficient by co-locating the tags and data in the same
row. However, similar to prior work on DRAM caches, the
recent work also architects DRAM caches in largely the same
way as traditional SRAM caches. For example by having a se-
rialized tag-and-data access and employing typical optimiza-
tions such as high associativity and intelligent replacement.

We observe that the effectiveness of cache optimizations
depends on technology constraints and parameters. What
may be regarded as indispensable in one set of constraints,
may be rendered ineffective when the parameters and con-
straints change. Given that the latency and size parameters
of a DRAM cache are so widely different from traditional
caches, and the technology constraints are disparate, we must
be careful about the implicit optimizations that get incorpo-
rated in the architecture of the DRAM cache. In particular,
we point out that DRAM caches are much slower than tra-
ditional caches, so optimizations that exacerbate the already
high hit latency may degrade overall performance even if they
provide a marginal improvement in hit rate. While this may
seem to be a fairly simple and straight-forward concept, it
has a deep impact (and often counter-intuitive implications)
on the design of DRAM cache architectures. We explain the
need for reexamining conventional cache optimizations for
DRAM caches with a simple example.

Consider a system with a cache and a memory. Memory
accesses incur a latency of 1 unit, and cache accesses incur 0.1
unit. Increasing the cache hit rate from 0% to 100% reduces
the average latency linearly from 1 to 0.1, shown as “Base
Cache” in Figure 1(a). Assuming the base cache has a hit rate
of 50%, then the average memory access time for the base
cache is 0.55. Now consider an optimization A that eliminates
40% of the misses (hit rate with A: 70%) but increases hit
latency to 1.4x (hit latency with A: 0.14 unit). We want to
implement A only if it reduces average latency. We may begin
by examining the target hit-rate for A given the higher hit-
latency, such that the average latency is equal to the base case,
which we call the Break-Even Hit Rate (BEHR). If the hit-rate
with A is higher than the BEHR, then A will reduce average
latency. For our example, the BEHR for A is 52%. So, we
deem A to be a highly effective optimization, and indeed it
reduces average latency from 0.55 to 0.40.

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.30

235



Opt−A

A
ve

ra
ge

 L
at

en
cy

(a) Fast Cache [Hit Latency 0.1] (b) Slow Cache [Hit Latency 0.5]

Break−Even HitRate=52%

HitRate with A=70%

Break−Even HitRate=83%

HitRate with A=70%

Base Cache

10 20 30 40 50 60 70 80 90 100

0.8

1.0

0.6

0.4

0.2

0

Cache Hit Rate (H%)

10 20 30 40 50 60 70 80 90 100

0.8

1.0

0.6

0.4

0.2

0

Cache Hit Rate (H%)

A
ve

ra
ge

 L
at

en
cy

Figure 1: Effectiveness of cache optimizations depend on cache hit latency. Option A increases hit latency by 1.4x and hit-rate
from 50% to 70%. (a) For a fast cache, A is highly effective at reducing average latency from 0.55 to 0.4 (b) For a slow cache, A
increases average latency from 0.75 to 0.79.

Now, consider the same “highly effective” optimization A,
but now the cache has a latency of 0.5 units, much like the
relative latency of a DRAM cache. The revised hit latency
with A will now be 1.4x0.5=0.7 units. Consider again that
our base cache has a hit-rate of 50%. Then the average la-
tency for the base cache would be 0.75 units, as shown in
Figure 1(b). To achieve this average latency, A must have a
hit rate of 83%. Thus optimization A, which was regarded as
highly effective in the prior case, ends up increasing average
latency (from 0.75 to 0.79). The Break Even Hit Rate depends
also on the hit rate of the base cache. If the base cache had a
hit rate of 60%, then A would need a 100% hit-rate simply to
break even! Thus, seemingly indispensable and traditionally
effective cache optimizations may be rendered ineffective if
they have a significant impact on cache hit latency for DRAM
caches. Note that typical cache optimizations, such as higher
associativity and better replacement, do not usually provide
a miss reduction as high as 40%, which we have considered
for A. However, our detailed analysis (Section 2) shows that
to support these optimizations, previously analyzed DRAM
cache architectures do incur a hit latency overhead of more
than 1.4x as considered for A.

It is our contention that DRAM caches should be designed
from the ground-up keeping hit latency as a first priority for
optimization. Design choices that increase hit latency by
more than a negligible amount must be carefully analyzed
to see if it indeed provides an overall improvement. We find
that previously proposed designs for DRAM caches that try
to maximize hit-rate are not well suited for optimizing over-
all performance. For example, they continue to serialize the
tag and data access (similar to traditional caches), which in-
creases hit latency significantly. They provide high associativ-
ity (several tens of ways) at the expense of hit latency. We can
significantly improve the performance of DRAM caches by
optimizing them for latency first, and then for hit rate. With
this insight, this paper makes following contributions:

1. We analyze the latency of three designs: SRAM-Tags,
the proposal from Loh and Hill, and an ideal latency-
optimized DRAM cache. We find that the Loh-Hill pro-
posal suffers from significant latency overheads due to
tag serialization and due to the MissMap predictor. For
SRAM-Tags, tag serialization latency limits performance.
Both designs leave significant room for performance im-
provement compared to the latency-optimized design.

2. We show that de-optimizing the DRAM cache from a
highly-associative structure to direct-mapped improves
performance by reducing the hit latency, even if it de-
grades cache hit rate. For example, simply configuring
the design of Loh and Hill from 29-way to direct-mapped
enhances performance improvement from 8.7% to 15%.
However, this design still suffers from tag serialization due
to separate accesses to the “tag-store” and “data-store.”

3. We propose the Alloy Cache, a highly-effective latency-
optimized cache architecture. Rather than splitting cache
space into “tag store” and “data store,” it tightly integrates
or alloys the tag and data into one unit (Tag and Data,
TAD). Alloy Cache streams out a TAD unit on each cache
access, thus avoiding the tag serialization penalty.

4. We present a simple and effective Memory Access Pre-
dictor [15] to avoid the cache access penalty in the path
of servicing cache miss. Unlike MissMap, which incurs
multi-megabyte storage and L3 access delay, our proposal
requires a storage overhead of 96 bytes per core and incurs
a latency of 1 cycle. Our predictor provides a performance
improvement within 2% of a perfect predictor.

Our evaluations with a 256MB DRAM cache show that,
on average, our latency-optimized design (35%) significantly
outperforms both the proposal from Loh and Hill (8.7%) as
well as the impractical SRAM-Tag design (24%). Thus, our
simple design with less than 1KB overhead (due to predictor)
provides 1.5x the performance benefits of the SRAM design
that requires several tens of megabytes of overhead.

236



SRAM TAG−STORE

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

MISS
MAP

DATAOUT

DATAOUT

T T T

29 ways of data

DATAOUT

ROW BUFFER

DRAM ARRAY

(c) IDEAL Latency−Optimized DRAM Cache

32 x 64 byte cache lines = 2048 bytes (size of row buffer)

Tag−Store

(b) DRAM Cache Organization as Proposed by Loh−Hill

ADDR

ADDR

ADDR

(a) DRAM Cache with SRAM Tag−Store (Impractical)

Figure 2: DRAM Cache organization and flow for a typical access for (a) SRAM Tag-store, (b) the organization proposed by Loh
and Hill, and (c) an IDEAL latency-optimized cache.

2. Background and Motivation

While stacked memory can enable giga-scale DRAM caches,
several challenges must be overcome before such caches can
be deployed. An effective design of DRAM cache must
balance (at-least) four goals. First, it should minimize the
non-DRAM storage required for cache management (using
a small fraction of DRAM space is acceptable). Second, it
should minimize hit latency. Third, it should minimize miss
latency, so that misses can be sent to memory quickly. Fourth,
it should provide a good hit-rate. These requirements are of-
ten conflicting with each other, and a good design must bal-
ance these appropriately to maximize performance.

It is desirable to organize DRAM caches at the granularity
of a cache line in order to efficiently use cache capacity, and to
minimize the consumption of main memory bandwidth [10].
One of the main challenges in architecting a DRAM cache at
a line granularity is the design of the tag store. A per-line tag
overhead of 5-6 bytes quickly translates into a total tag-store
overhead of a few tens of megabytes for a cache size in the
regime of a few hundred megabytes. We discuss the options
to architect the tag store, and how it impacts cache latency.

2.1. SRAM-Tag Design

This approach stores tags in a separate SRAM structure, as
shown in Figure 2(a). For the cache sizes we consider, this de-
sign incurs an unacceptably high overhead (24MB for 256MB
DRAM cache). We can configure the DRAM cache as a
32-way cache and store the entire set in one row of the
cache [2, 10]. To obtain data, the access must first go through
the tag-store. We call the latency due to serialization of tag
access as “Tag Serialization Latency” (TSL). TSL directly im-
pacts the cache hit latency, and hence must be minimized.

2.2. Tags-in-DRAM: The LH-Cache

We can place the tags in DRAM to avoid the SRAM overhead.
However, naively doing so would require that each DRAM
cache access incurs a latency of two accesses, one for tag and
the other for data, further exacerbating the already high hit
latency. A recent work from Loh and Hill [10, 11] reduces
the access penalty of DRAM tags by co-locating the tags and
data for the entire set in the same row, as shown in Figure 2(b).
It reserves three lines in a row for tag store, and makes the
other 29 lines available as data lines, thus providing a 29-way
cache. A cache access must first obtain the tags, and then the
data line. The authors propose Compound Access Scheduling
so that the second access (for data) is guaranteed to get a row
buffer hit. However, the second access still incurs approxi-
mately half the latency of the first, so this design still incurs
significant TSL overhead.

Given that the tag check incurs a full DRAM access, the la-
tency for servicing a cache miss is increased significantly. To
service cache misses quickly, the authors propose a MissMap
structure that keeps track of the lines in the DRAM cache.
If a miss is detected in the MissMap, then the access can
go directly to memory without the need to wait for a tag
check. Unfortunately, the MissMap structure requires multi-
megabyte storage overhead. To implement this efficiently, the
authors propose to embed the MissMap in the L3 cache. The
MissMap is queried on each L3 miss, which means that the
extra latency of the MissMap, which we call Predictor Seri-
alization Latency (PSL), is added to the latency of both cache
hit and cache miss. Thus, the hit latency suffers from both
TSL and PSL. Throughout this paper, we will assume that the
design from Loh and Hill [10] is always implemented with
the MissMap, and we will refer to it simply as the LH-Cache.

237



TAG−STORE [24]

X

Y

(b) DRAM−CACHE WITH SRAM TAG−STORE (IMPRACTICAL)

(c) DRAM CACHE AS PROPOSED BY LOH−HILL

Hit X

Hit Y

MISS X

MISS Y

MISS X

MISS Y

MISS X

MISS Y

Hit X/Y

24 32 40 48 56 64 72 80 88 96 104 112

(a) BASELINE MEMORY (NO DRAM CACHE)

[88]

[64]

[76]

[76]

[52]

[88]

[112]

[112]

[96]

8 160

[22]

[40]

[52]

Hit X/Y CAS (DATA)CAS (TAGS)

MEMORY

CACHE

ACT CAS BUS

[36] [36] [16]

[18] [18] [4]

TAG−CHECK

(d) IDEAL LATENCY−OPTIMIZED DRAM CACHE

MISS−MAP [24]

Figure 3: Latency breakdown for two classes of isolated accesses X and Y. X has good row buffer locality and Y needs to activate
the memory row to get serviced. The latency incurred in an activity is marked as [N] processor cycles.

2.3. IDEAL Latency-Optimized Design

Both SRAM-Tags and LH-Cache have hit latency due to TSL.
To reduce conflict misses, both designs are configured sim-
ilar to conventional set-associative caches. They place the
entire set in a row for conflict miss reduction, sacrificing
the row-buffer hits for cache accesses (sequentially-addressed
lines map to different sets, and the probability of temporally-
close accesses going to same set is � 1%). Furthermore,
for LH-Cache, supporting high associativity incurs higher la-
tency due to streaming a large number of tag lines, and the
bandwidth consumed due to replacement update and victim
selection further worsens the already high hit latency.

We argue that DRAM caches must be architected to mini-
mize hit latency. This can be done by a suitable cache struc-
ture that avoids extraneous latency overheads and supports
row buffer locality. Ideally, such a structure would have zero
TSL and PSL, and would stream out exactly one cache line af-
ter a latency equal to the raw latency of the DRAM structure
(ACT+CAS for accesses that open the row, and only CAS for
row-buffer hits). Also, it would know a priori if the access
would hit in cache or go to memory. We call such a design as
IDEAL-LO (Latency Optimized). As shown in Figure 2(c), it
does not incur any latency overheads.

2.4. Raw Latency Breakdown

In this section, we quantitatively analyze the latency effective-
ness of different designs. While there are several alternative
implementations of both SRAM-Tags and LH-Cache, we will
restrict the analysis in this section to the exact implementa-
tion of SRAM-Tags and LH-Cache as previously described,
including identical latency numbers for all parameters [10],
which are summarized in Table 2. We report latency in terms
of processor cycles. Off-chip memory memory has tACT and
tCAS of 36 cycles each, and needs 16 cycles to transfer one
line on the bus. Stacked DRAM has tACT and tCAS of 18
cycles each, and needs 4 cycles to transfer one line on the
bus. The latency for accessing the L3 cache as well as the
SRAM-Tag store is assumed to be 24 cycles.

To keep the analysis tractable, we will initially consider
only isolated accesses of two types, X and Y. Type X has a
high row buffer hit-rate for off-chip memory and is serviced
by memory with a latency equal to a row buffer hit. Type Y
needs to open the row in order to get serviced. The baseline
memory system would service X in 52 cycles (36 for CAS,
and 16 for Bus), and Y in 88 cycles (36 for ACT, 36 for CAS,
and 16 for Bus). Figure 3 shows the latency incurred by dif-
ferent designs to service X and Y.

238



As both SRAM-Tags and LH-Cache map the entire set to
a single DRAM row, they get poor row buffer hit-rates in the
DRAM cache. Therefore for both X and Y, neither cache
design will give a row buffer hit. Therefore, a hit for both X
and Y will incur a latency of ACT. However, with IDEAL-LO,
X gets a row buffer hit and Y will need a latency of ACT.

The SRAM-Tag suffers a Tag Serialization Latency of 24
cycles for both cache hits and misses. A cache hit needs an-
other 40 cycles (18 ACT + 18 CAS + 4 burst), for a total of 64
cycles. Thus SRAM-Tag increases latency for hits on X, de-
creases latency for hits on Y, and increases latency for misses
on both X and Y due to the inherent latency of tag-lookup.

LH-Cache first probes the MissMap, which incurs a latency
of 24 cycles.1 For a hit, LH-Cache then issues a read for
tag information (ACT+CAS, 36 cycles), then it streams out
the three tag lines (12 cycles), followed by one DRAM cycle
for tag check. This is followed by access to the data line
(CAS+burst). Thus a hit in LH-Cache incurs a latency of 96
cycles, almost doubling the latency for X on hit, degrading the
latency for Y on hit, and adding MissMap latency to miss.

An IDEAL-LO organization would service X with a row
buffer hit, reducing the latency to 22 cycles. A hit for Y would
incur 40 cycles. IDEAL-LO does not increase miss latency.

To summarize, we assumed that the raw latency of the
stacked DRAM cache is half that of the off-chip memory.
However, due to the inherent serialization latencies, LH-
Cache (and in most cases SRAM-Tag) has a higher raw la-
tency than off-chip memory. Whereas, IDEAL-LO continues
to provide a reduction in hit latency on cache hits.

2.5. Bandwidth Benefits of DRAM Cache

Even with a higher raw hit latency than main memory, both
LH-Cache and SRAM-Tag can still improve performance by
providing two indirect benefits. First, stacked DRAM has
∼8x more bandwidth than off-chip DRAM, which means
cache requests wait less. Second, contention for off-chip
memory is reduced as DRAM cache hits are filtered. The
performance benefit of LH-Cache and SRAM-Tags comes
largely from these two indirect benefits and not due to raw
latency. The first benefit relies on having a cache that has
high-bandwidth. Although stacked DRAM has 8x raw band-
width compared to off-chip, LH-Cache uses more than 4x line
transfers on each cache access (3 for tag, 1 for data, and some
for update), so the effective bandwidth becomes < 2x. Both
SRAM-Tag and IDEAL-LO maintains 8x bandwidth by ef-
ficiently using the bandwidth. Therefore, they are more ef-
fective than LH-Cache at reducing waiting time for cache re-
quests. We found that the latency for servicing requests from
off-chip memory is similar for all three designs.

1The MissMap serialization latency can be avoided by probing the
MissMap in parallel with L3 access. However, this would double the L3
accesses, as MissMap would be probed on L3 hits as well, causing bank/port
contention and increasing L3 latency and power consumption. Hence, prior
work [10] used serial access for MissMap, and so did we.

2.6. Performance Potential

Figure 4 compares the performance of three designs: SRAM-
Tag, LH-Cache, and IDEAL-LO. The numbers are speedups
with respect to a baseline that does not have a DRAM cache,
and are reported for a DRAM cache of size 256MB (method-
ology in Section 3).

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

LH-Cache
SRAM-Tag
IDEAL-LO

mcf_
r 

lbm
_r

 

so
ple

x_
r 

milc
_r

 

om
ne

t_r
 

gc
c_

r 

bw
av

es
_r

 

sp
hin

x_
r 

ge
ms_

r 

lib
qn

tm
_r

 

Gmea
n 

Figure 4: Performance potential of IDEAL-LO design.

Validation with Prior Work: On average, SRAM-Tags pro-
vide a performance improvement of 24% and LH-Cache
8.7%. Thus, LH-Cache obtains only one-third of the perfor-
mance benefit of SRAM-Tags which is inconsistent with the
original LH-Cache study [10], which reported that the LH-
Cache obtains performance very close to SRAM-Tag. Given
the difference in raw hit latencies between the two designs
(see Figure 3) and 4x bandwidth consumption of LH-Cache
compared to SRAM-Tags, it is highly unlikely that LH-Cache
would perform close to SRAM-Tags. A significant part of
this research study was to resolve this inconsistency with
previously reported results. The authors of the LH-Cache
study [10] have subsequently published an errata [9] that
shows revised evaluations after correcting deficiencies in their
evaluation infrastructure. The revised evaluations for 256MB
show on average ≈10% improvement for LH-Cache and ≈

25% for SRAM-Tag, consistent with our evaluations.
Note that IDEAL-LO outperforms both SRAM-Tags and

LH-Cache, and provides an average of 38%. For libquan-
tum, the memory access patterns has very high row-buffer
hit rates in the off-chip DRAM resulting in mostly type X re-
quests. Therefore, both SRAM-Tag and LH-Cache show per-
formance degradations due to their inabilities to exploit the
spatial locality of sequential access streams.

2.7. De-Optimizing for Performance

We now present simple de-optimizations that improve the
overall performance of LH-Cache, at the expense of hit-rate.
The first is using a replacement scheme that does not re-
quire update (random replacement, instead of LRU-based
DIP): This avoids LRU-update and victim selection over-
heads, which improves hit latency due to the reduced bank
contention. The second converts LH-Cache from 29-way to
direct mapped. This has two advantages: direct, in that we
do not need to stream out three tag lines on each access, and
indirect, employing open page mode for lower latency. For

239



SRAM-Tag and LH-cache, sequentially addressed cachelines
are mapped to different sets, and because each set is mapped
to a unique row, the probability of a row-buffer hit is very
low. With a direct-mapped organization, several consecutive
sets map to the same physical DRAM row, and so accesses
with spatial locality result in row buffer hits. The row-buffer
hit rate for the direct-mapped configuration was measured to
be 56% on average, compared to less than 0.1% when the
entire set (29-way or 32-way) is mapped to the same row.

Table 1: Impact of De-Optimizing LH-Cache.

Configuration Speedup Hit-Rate Hit Latency
(cycles)

LH-Cache 8.7% 55.2% 107
LH-Cache + Rand Repl 10.2% 51.5% 98
LH-Cache (1-way) 15.2% 49.0% 82

SRAM-Tag (32-way) 23.8% 56.8% 67
SRAM-Tag (1-way) 24.3% 51.5% 59
IDEAL-LO (1-way) 38.4% 48.2% 35

Table 1 shows the speedup, hit-rate, and average hit latency
for various flavors of LH-Cache. We also compare them with
SRAM-Tag and IDEAL-LO. LH-Cache has hit latency of 107
cycles, almost 3x compared to IDEAL-LO. De-optimizing
LH-Cache reduces the latency to 98 cycles (random replace-
ment) and 82 cycles (direct mapped). These optimizations
reduce hit-rate and increase misses significantly (a reduction
in hit-rate from 55% to 49% represents almost 15% more
misses). However, this still improves performance signifi-
cantly. For SRAM-Tag, converting from 32-way to 1-way
had little benefit (≈ 0.5%), as the reduction in hit latency is
offset by reduction in hit-rate.

While a direct-mapped implementation of LH-cache is
more effective than the set-associative implementation, it still
suffers from Tag Serialization Latency, as well as the Pre-
dictor Serialization Latency, resulting in a significant per-
formance gap between LH-Cache and IDEAL-LO (15% vs.
38%). Our proposal removes these serialization latencies and
obtains performance close to IDEAL-LO. We describe our
experimental methodology before describing our solution.

3. Experimental Methodology

3.1. Configuration

We use a Pin-based x86 simulator with a detailed memory
model. Table 2 shows the configuration used in our study.
The parameters for the L3 cache and DRAM (off-chip and
stacked) are identical to the original LH-Cache study [10], in-
cluding a 24-cycle latency for the SRAM-Tag. For LH-Cache,
we model an idealized unlimited-size Miss Map that resides
in the L3 cache but does not consume any L3 cache capac-
ity. For both LH-Cache and SRAM-Tag we use LRU-based
DIP [16] replacement. We will perform detailed studies for a
256MB DRAM cache. In Section 6.1, we will analyze cache
sizes ranging from 64MB to 1GB.

Table 2: Baseline Configuration

Processors
Number of cores 8
Frequency 3.2GHz
Width 1 IPC

Last Level Cache
L3 (shared) 8MB, 16-way 24 cycles

Off-Chip DRAM
Bus frequency 800 MHz (DDR 1.6 GHz)
Channels 2
Ranks 1 Rank per channel
Banks 8 Banks per rank
Row buffer size 2048 bytes
Bus width 64 bits per channel
tCAS-tRCD-tRP-tRAS 9-9-9-36

Stacked DRAM
Bus frequency 1.6GHz (DDR 3.2GHz)
Channels 4
Banks 16 Banks per rank
Bus width 128 bits per channel

3.2. Workloads

We use a single SimPoint [14] slice of 1 billion instructions
for each benchmark from the SPEC2006 suite. We perform
evaluations by executing 8 copies of each benchmark in rate
mode. Given that our study is about large caches, we perform
detailed studies only for the 10 workloads that have a speedup
of more than 2 with a perfect L3 cache (100% hit-rate). Other
workloads are analyzed in Section 6.4.

Table 3 shows the workloads sorted based on perfect L3
speedup, the Misses Per 1000 Instructions (MPKI), and foot-
print (the number of unique lines multiplied by linesize). We
model a virtual-to-physical mapping to ensure two bench-
marks do not map to the same physical address. We use a suf-
fix _r with the name of the benchmark to indicate rate mode.

We perform timing simulation until all benchmarks in the
workload finish execution and measure the execution time of
the workload as the average execution time across all 8 cores.

Table 3: Benchmark Characteristics.

Workload Perfect-L3 MPKI Footprint
Name Speedup

mcf_r 4.9x 74.0 10.4 GB
lbm_r 3.8x 31.8 3.3 GB
soplex_r 3.5x 27.0 1.9 GB
milc_r 3.5x 25.7 4.1 GB
omnetpp_r 3.1x 20.9 259 MB
gcc_r 2.8x 16.5 458 MB
bwaves_r 2.8x 18.7 1.5 GB
sphinx_r 2.4x 12.3 80 MB
gems_r 2.2x 9.7 3.6 GB
libquantum_r 2.1x 25.4 262 MB

240



ROW BUFFER

DRAM ARRAY

80B = IGNORE [8B] + TAG [8B] + DATA [64B]

(8B)
2KB Row Buffer = 28 x 72 byte TAD = 28 data lines (32 bytes unused)

80B = TAG [8B] + DATA [64B] + IGNORE [8B]

OR

Alloy CacheTAG−AND−DATA (TAD)

ADDR

DATA(64B)TAG

Figure 5: Architecture and Operation of Alloy Cache that integrates Tag and Data (TAD) into a single entity called TAD. The size
of data transfers is determined by a 16-byte wide data-bus, hence minimum transfer of 80 bytes for obtaining one TAD.

4. Latency-Optimized Cache Architecture

While configuring the LH-Cache from a 29-way structure to
a direct-mapped structure improved performance (from 8%
to 15%), it still left significant room for improvement com-
pared to a latency-optimized solution (38%). One of the
main sources of this gap is the serialization latency due to
tag lookup. We note that LH-Cache created a separate “tag-
store” and “data-store” in the DRAM cache, similar to con-
ventional caches. A separate tag-store and data-store makes
sense for a conventional cache, because they are indeed phys-
ically separate structures. The tag-store is optimized for la-
tency to support quick-lookups and can have multiple ports,
whereas the data-store is optimized for density. We make an
important observation that creating a separate contiguous tag-
store (similar to conventional caches) is not necessary when
tags and data co-exist in the same DRAM array.

4.1. Alloy Cache

Obviating the separation of tag-store and data-store can help
us avoid the TSL overhead. This is the key insight in our pro-
posed cache structure, which we call the Alloy Cache. The
Alloy Cache tightly integrates or alloys tag and data into a
single entity called TAD (Tag and Data). On an access to
the Alloy Cache, it provides one TAD. If the tag obtained
from the TAD matches with the given line address, it indi-
cates a cache hit and the data line in the TAD is supplied. A
tag mismatch indicates cache miss. Thus, instead of having
two separate accesses (one to the “tag-store” and the other to
the “data-store”), Alloy Cache tightly integrates those two ac-
cesses into a single unified access, as shown in Figure 5. On
a cache miss, there is a minor cost in that bandwidth is con-
sumed transferring a data line that is not used. Note that this
overhead is still substantially less than the three tag lines that
must be transferred for both hits and misses in the LH-Cache.

Each TAD represents one set of the direct-mapped Alloy
Cache. Given that the Alloy Cache has a non-power-of-two
number of sets, we cannot simply use the address bits to iden-
tify the set. We assume that a modulo operation on the line ad-

dress is used to determine the set index of the Alloy Cache.2

A non-power-of-two number of sets also means that the tag
entry needs to store full tags, which increases the size of the
tag entry. We estimate that a tag entry of 8 bytes is more than
sufficient for the Alloy Cache (for a physical address space
of 48-bits, we need 42 tag bits, 1 valid bit, 1 dirty bit, and
the remaining 20 bits for coherence support and other opti-
mizations). The minimum size of a TAD is thus 72 bytes (64
bytes for data line and 8 bytes for tag). The Alloy Cache can
store 28 lines in a row, reaching close to the 29-lines per row
storage efficiency of the LH-Cache.

The size of data transfer from the Alloy Cache is also af-
fected by the physical constraints of the DRAM cache. For
example, the size of the databus assumed for our stacked
DRAM configuration is 16 bytes, which means transfers to-
and-from the cache occur at the granularity of 16 bytes. Thus,
it will take a burst of five transfers to obtain one TAD of 72
bytes. To keep our design simple, we restrict the transfers to
be aligned at the granularity of the data-bus size. This require-
ment means that for odd sets of the Alloy Cache, the first 8
bytes are ignored and for even sets the last 8 bytes are ignored.
The tag-check logic checks either the first eight bytes or the
next eight bytes depending on the low bit of the set index.

4.2. Impact on Effective Bandwidth

Table 4 compares the effective bandwidth of servicing one
cache line from various structures. The raw bandwidths and
effective bandwidths are normalized to off-chip memory. On
a cache hit, LH-Cache transfers (3 lines of tag + 1 data +
replacement update) reducing raw bandwidth of 8x into an
effective bandwidth of less than 2x. Whereas, Alloy Cache
can provide an effective bandwidth of up-to 6.4x.

2Designing a general purpose modulo-computing unit incurs high area
and latency overheads. However, here we compute modulo with respect to
a constant, so it is much simpler and faster compared to a general-purpose
solution. In fact, modulo with respect to 28 (number of sets in one row of
Alloy Cache) can be computed easily with eight 5-bit adders using residue
arithmetic (28=32-4). This value can then be removed from the line address
to get row-id of DRAM cache. We estimate the calculation to take two cycles
and only a few hundred logic gates. We assume that the index calculation of
the Alloy Cache happens in parallel with the L3 cache access (thus, we have
up to 24 cycles to calculate the set index of the Alloy Cache).

241



Table 4: Bandwidth comparison (relative to off-chip memory).

Structure Raw Transfer per Effective
Bandwidth access (hit) Bandwidth

Off-chip Memory 1x 64 byte 1x

SRAM-Tag 8x 64 byte 8x
LH-Cache 8x (256+16) byte 1.8x
IDEAL-LO 8x 64 byte 8x
Alloy Cache 8x 80 byte 6.4x

4.3. Latency and Performance Impact

The Alloy Cache avoids tag serialization. Instead of two seri-
alized accesses, one each for tag and data, it provides tag and
data in a single burst of five transfers on the data-bus. Com-
paratively, a transfer of only the data line would take four
transfers, so the latency overhead of transferring TAD instead
of only the data line is 1 bus cycle. However, this overhead is
negligible compared to the TSL overhead incurred by SRAM-
Tag (24 cycles) and LH-Cache (32-50 cycles). Because of the
avoidance of TSL, the average hit latency for Alloy Cache is
significantly better (42 cycles), compared to both SRAM-Tag
(69 cycles) and LH-Cache (107 cycles).

The Alloy Cache reduces the TSL but not the PSL, so the
overall performance depends on how misses are handled. We
consider three scenarios: First, no prediction (wait for tag ac-
cess until cache miss is detected). Second, use the MissMap
(PSL of 24 cycles). Third, perfect predictor (100% accuracy,
0 latency). Figure 6 compares the speedup of these to the
impractical SRAM-Tag design configured as 32-way.

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Alloy+NoPred Alloy+MissMap Alloy+Perfect SRAM-Tags

mcf_
r 

lbm
_r

 

so
ple

x_
r 

milc
_r

 

om
ne

t_r
 

bw
av

es
_r

 

gc
c_

r 

lib
qn

tm
_r

 

sp
hin

x_
r 

ge
ms_

r 

Gmea
n 

Figure 6: Speedup with Alloy Cache.

Even without any predictor, the Alloy Cache provides a
21% performance improvement, much closer to the imprac-
tical SRAM-Tag. This is primarily due to the lower hit la-
tency. A MissMap provides better miss handling, but the
24-cycle PSL is incurred on both hits and misses, so the per-
formance is actually worse than not using a predictor. With
a perfect predictor (100% accuracy and zero-cycle latency),
the Alloy Cache’s performance increases to 37%. The next
section describes effective single-cycle predictors that obtain
performance close to that with a perfect predictor.

5. Low-Latency Memory Access Prediction

The MissMap approach focuses on getting perfect informa-
tion about the presence of the line in the DRAM cache. There-
fore, it needs to keep track of information on a per-line basis.
Even if this incurred a storage of one-bit per line, given that
a large cache can have many millions of lines, the size of the
MissMap quickly gets into the megabyte regime. Given the
large size of the MissMap, it is better to avoid dedicated stor-
age and store it in an already existing on-chip structure such
as the L3 cache. Hence, it incurs a significant latency of L3
cache access (24 cycles). In this section, we will describe ac-
curate predictors that incur negligible storage and delay. We
lay the background for operating such a predictor before de-
scribing the predictor. The ideas described in this Section are
derived from the prior work from Qureshi [15].

5.1. Serial Access vs. Parallel Access

The implicit assumption made in the LH-Cache study was
that the system needs to ensure that there is a DRAM cache
miss before accessing memory. This assumption is similar
to how conventional caches operate. We call this the Serial
Access Model (SAM), as the cache access and memory access
get serialized. The SAM model is bandwidth-efficient as it
sends only the cache misses to main memory, as shown in
Figure 7.

MISS

SAM

CHIP

PAM

MEMORY

CACHE

CHIP CACHE MEMORY

Figure 7: Cache Access Models: Serial vs Parallel

Alternatively, we may choose to use a less bandwidth ef-
ficient model, which probes both the cache and memory in
parallel. We call this the Parallel Access Model (PAM), as
shown in Figure 7. The advantage of PAM is that it removes
the serialization of the cache-miss detection latency from the
memory access path. To implement PAM correctly though,
we should give priority to cache content rather than the mem-
ory content, as cache content can be dirty. Also, if the mem-
ory system returns data before the cache returns the outcome
of the tag check, then we must wait before using the data as
the line could still be present in a dirty state in the cache.

At first blush, it may seem wasteful to access the DRAM
cache in case of a DRAM cache miss. However, for both LH-
Cache and Alloy Cache, the tags are located in DRAM. So,
even on a DRAM cache miss, we still need to read the tags
anyway to select a victim line and check if the victim is dirty
(to schedule writeback). So, PAM does not have a significant
impact on cache utilization compared to a perfect predictor.

242



5.2. To Wait or Not to Wait

We can get the best of both SAM and PAM by dynamically
choosing between the two, based on an estimate of whether
the line is likely to be present in the cache or not. We call
this Dynamic Access Model (DAM). If the line is likely to
be present in the cache, DAM uses SAM to save on memory
bandwidth. And if the line is unlikely to be present, DAM
uses PAM to reduce latency. Note that DAM does not require
perfect information for deciding between SAM and PAM, but
simply a good estimate. To help with this estimate, we pro-
pose a hardware-based Memory Access Predictor (MAP). To
keep the latency of our predictor to a bare minimum, we con-
sider only simple predictors.

5.3. Memory Access Predictor

The latency savings of PAM and the bandwidth savings of
SAM depend on the cache hit rate. If the cache hit rate is very
high, then SAM can reduce bandwidth. If the cache hit-rate
is very low, then PAM can reduce latency. So, we can simply
use cache hit rate for memory-access prediction. However,
it is well known that both cache misses and hits show good
correlation with previous outcomes [5] and exploiting such
correlation results in more effective prediction than simply
using the hit-rate. For example, if H is hit and M is miss,
and the last eight outcomes are MMMMHHHH, then using
the hit-rate would give an accuracy of 50%, but a simple last-
time predictor would give an accuracy of 87.5% (assuming
the first M was predicted correctly). Based on this insight, we
propose to use History-Based Memory-Access Predictors.

5.3.1. Global-History Based MAP (MAP-G)
Our basic implementation, called MAP Global or MAP-G,

uses a single saturating counter called the Memory Access
Counter (MAC) that keeps track if the recent L3 misses re-
sulted in a memory access or a hit in the DRAM cache. If
the L3 miss results in a memory access, then the MAC is in-
cremented, otherwise MAC is decremented (both operations
are done using saturating arithmetic). For prediction, MAP-
G simply uses the MSB of the MAC to decide if the L3 miss
should employ SAM (MSB=0) or PAM (MSB=1). We em-
ploy MAP-G on a per-core basis and use a 3-bit counter for
the MAC. Our results show that MAP-G bridges more than
half the performance gap between SAM and perfect predic-
tion. Note that because writes are not on the critical path
(at this level, writes are mainly due to dirty evictions from
on-chip caches), we do not make predictions for writes and
simply employ SAM.

5.3.2. Instruction-Based MAP (MAP-I)
We can improve the effectiveness of MAP-G by exploiting

the well-known observation that the cache hit/miss informa-
tion is heavily correlated with the instruction address that
caused the cache access [3, 8, 18]. We call this implemen-
tation Instruction-Based MAP or simply MAP-I. Instead of
using a single MAC, MAP-I uses a table of MACs, called the

Memory Access Counter Table (MACT). The address of the
L3 miss causing instruction is hashed (using folded-xor [17])
into the MACT to obtain the desired MAC. All predictions
and updates happen based on this MAC. We found that sim-
ply using 256 entries (8-bit index) in the MACT is sufficient.
The storage overhead for this implementation of MAP-I is
256*3-bit=96 bytes. We keep the MACT on a per-core basis
to avoid interference between the cores (for eight cores, to-
tal overhead is only 96*8=768 bytes). Like MAP-G, MAP-I
does not make predictions for write requests.

Note that our predictors do not require that the instruction
address be stored in the cache. For read misses, the instruc-
tion address of miss causing load is forwarded with the miss
request. As writeback misses are serviced with SAM, we do
not need instruction addresses for writebacks.

5.4. Performance Results

Figure 8 shows the speedup from the Alloy Cache with dif-
ferent memory access predictors. If we use a prediction of
always-cache-hit the system behaves like SAM, and if we use
a prediction of never-cache-hit the system behaves like PAM.
The perfect predictor assumes 100% accuracy at zero latency.

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Sp
ee

du
p

SAM PAM MAP-G MAP-I Perfect

mcf_
r 

lbm
_r

 

so
ple

x_
r 

milc
_r

 

om
ne

t_r
 

bw
av

es
_r

 

gc
c_

r 

lib
qn

tm
_r

 

sp
hin

x_
r 

ge
ms_

r 

Gmea
n 

Figure 8: Performance improvement of Alloy Cache for differ-
ent Memory Access Predictors

On average, there is a 14% gap between SAM (22.6%)
and perfect prediction (36.6%). PAM provides 29.6% per-
formance improvement but results in almost twice as many
memory accesses as perfect prediction. MAP-G provides
30.9% performance, bridging half the performance difference
between SAM and the perfect predictor. It thus performs sim-
ilar to PAM but without doubling the memory traffic. MAP-I
provides an average of 35%, coming within 1.6% of the per-
formance of a perfect predictor. Thus, even though our pre-
dictors are simple (< 100 bytes per core) and low latency (1
cycle), they get almost all of the potential performance.

For libquantum, MAP-G performs 3% better than the per-
fect predictor. This happens because some of the mispredic-
tions avoid the row buffer penalty for later demand misses.
For example, consider four lines A, B, C, D that map to the
same DRAM row. Only A and B are present in the DRAM
cache. A, B, C, D are accessed in a sequence. If A and B
are predicted correctly, C would incur a row opening penalty

243



when it goes to memory. If, on the other hand, A is mispre-
dicted it would avoid the row opening penalty for C.

5.5. Prediction Accuracy Analysis

To provide insights into the effectiveness of the predictors,
we analyzed different outcome-prediction scenarios. There
are four cases: 1) L3 miss is serviced by memory and our
predictor predicts it as such, 2) L3 miss is serviced by mem-
ory and our predictor predicts that it will be serviced by the
DRAM cache, 3) L3 miss is serviced by the DRAM cache
and our predictor predicts memory access, and 4) L3 miss is
serviced by the DRAM-cache and our predictor predicts it to
be so. Scenarios 2 and 3 denote mispredictions. However,
note that the cost of mispredictions are quite different in the
two scenarios (scenario 2 incurs higher latency and scenario
3 extra bandwidth). Table 5 shows the scenario distribution
for different predictors averaged across all workloads.

Table 5: Accuracy for Different Predictors

Serviced by Memory Serviced by Cache Overall
Prediction Memory Cache Memory Cache Accuracy

SAM 0 51.8% 0 48.1% 48.1%
PAM 51.8% 0 48.2% 0 51.8%
MAP-G 45.1% 6.7% 10.8% 37.4% 82.5%
MAP-I 48.3% 3.5% 1.9% 46.2% 94.5%
Perfect 51.8% 0% 0% 48.2% 100%

PAM almost doubles the memory traffic compared to other
approaches (48% of L3 misses are wastefully deemed to ac-
cess memory when they are in-fact serviced by the DRAM-
cache). Compared to a perfect predictor, MAP-I has higher
latency for 3.5% of the L3 misses, and extraneous band-
width consumption for 1.9% of the L3 misses. For the re-
maining 94.5% of the L3 misses, MAP-I prediction is cor-
rect. Thus, even though our predictors are quite simple, low-
cost, and low-latency, they are still highly-effective, provide
high accuracy, and obtain almost all of the potential for per-
formance improvement from memory access prediction. Un-
less stated otherwise, the Alloy Cache is always implemented
with MAP-I in the remainder of this paper.

5.6. Implications on Memory Power and Energy

Accessing memory in parallel with the cache, as done in PAM
and conditionally in DAM, increases power in memory sys-
tem due to wasteful memory accesses. For PAM, all of the
L3 misses would be sent to off-chip memory. Whereas with
SAM, only the misses in the DRAM cache would get sent to
memory. From Table 5, it can be concluded that PAM would
almost double the memory activity compared to SAM. Hence,
we do not recommend unregulated use of PAM (except as
a reference point). For DAM, our MAP-I predictor is quite
accurate which means wasteful parallel accesses account for
only 1.9% of L3 misses, compared to 48% with PAM.

6. Analysis and Discussions

6.1. Sensitivity to Cache Size

The default DRAM cache size for all of our studies is 256MB.
In this section, we study the impact of different schemes as
the cache size is varied from 64MB to 1GB. Figure 9 shows
the average speedup with LH-Cache (29-way), SRAM-Tag
(32-way), Alloy Cache, and IDEAL-LO. IDEAL-LO is the la-
tency optimized theoretical design that transfers only 64 byte
on a cache hit and has perfect zero-latency predictor.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

Sp
ee

du
p 

LH-Cache SRAM-Tag Alloy-Cache IDEAL-LO

64MB 128MB 256MB 512MB 1GB 

Figure 9: Performance impact across various cache size.
Alloy-Cache continues to significantly outperform impractical
SRAM-Tag and reaches close to the upperbound of IDEAL-LO.

The SRAM-Tag design suffers from Tag Serialization La-
tency (TSL). LH-Cache suffers from both TSL and PSL due
to the MissMap. Alloy Cache avoids both TSL and PSL,
hence it outperforms both the LH-Cache and SRAM-Tag
across all studied cache sizes. For the 1GB cache size, LH-
Cache provides an average improvement of 11.1%, SRAM-
Tag provides 29.3%, and Alloy Cache provides 46.1%. Thus,
Alloy Cache provides approximately 1.5 times the improve-
ment of the SRAM-Tag design. Note that the SRAM-Tag im-
plementation incurs an impractical storage overhead of 6MB,
12MB, 24MB, 48MB, and 96MB for DRAM cache sizes of
64MB, 128MB, 256MB, 512MB and 1GB, respectively. Our
proposal, on the other hand, requires less than one kilobyte of
storage, and still outperforms SRAM-Tag significantly, con-
sistently reaching close to the performance of IDEAL-LO.

6.2. Impact on Hit Latency

The primary reason why the Alloy Cache performs so well
is because it is designed from the ground-up to have lower
latency. Figure 10 compares the average read latency of LH-
Cache, SRAM-Tags, and Alloy Cache. Note that SRAM-
Tags incur a tag serialization latency of 24 cycles, and LH-
Cache incurs MissMap delay of 24 cycles in addition to the
tag serialization latency (32-50 cycles). For the Alloy Cache,
there is no tag serialization, except for the one additional bus
cycle for obtaining the tag with dataline. The average hit la-
tency for LH-Cache is 107 cycles. The Alloy Cache cuts this
latency by 60%, bringing it to 43 cycles. This significant re-
duction causes Alloy Cache to outperform LH-Cache despite
the lower hit rate. The SRAM-Tag incurs an average latency
of 67 cycles, hence lower performance than the Alloy Cache.

244



0

20

40

60

80

100

120

A
vg

 H
it

 L
at

en
cy

 (
C

yc
le

s) LH-Cache SRAM-Tag Alloy Cache

mcf_
r 

lbm
_r

 

so
ple

x_
r 

milc
_r

 

om
ne

t_r
 

bw
av

es
_r

 

gc
c_

r 

lib
qn

tm
_r

 

sp
hin

x_
r 

ge
ms_

r 

Ave
rag

e 

Figure 10: Average Hit-Latency: LH-Cache 107 cycles, SRAM-
Tag 67 cycles, and Alloy Cache 43 cycles.

6.3. Impact on Hit-Rate

Our design de-optimizes the cache architecture from a highly-
associative structure to a direct-mapped structure in order
to reduce hit latency. We compare the hit rate of a highly-
associative 29-way LH-cache with the direct-mapped Alloy
Cache. Table 6 shows the average hit rate for different cache
sizes. For a 256MB cache, the absolute difference in hit
rates between the 29-way LH-Cache and direct-mapped Al-
loy Caches is 7%. Thus, the Alloy Cache increases misses
by 15% compared to LH-Cache. However, we show that the
60% reduction in hit latency compared to LH-Cache provides
much more performance benefit than a slight performance
degradation from the reduced hit rate. Table 6 also shows that
the hit-rate difference between a highly-associative cache and
a direct-mapped cache reduces as the cache size is increased
(at 1GB it is 2.5%, i.e., 5% more misses). The reducing gap
between the hit rate of a highly-associative cache and direct-
mapped cache as the cache size is increased is well known [6].

Table 6: Hit Rate: Highly associative vs. direct mapped

Cache LH-Cache Alloy-Cache Delta
Size (29-way) (1-way) Hit Rate

256 MB 55.2% 48.2% 7.0%
512 MB 59.6% 55.2% 4.4%

1 GB 62.6% 59.1% 2.5%

6.4. Other Workloads

In our detailed studies, we only considered memory-intensive
workloads that have a speedup of at least 2x if L3 cache
is made perfect (100% hit rate). Figure 11 shows the per-
formance improvement from LH-Cache, SRAM-Tags, and
Alloy-Cache for the remaining workloads that spend at least
1% of time in memory. These benchmarks were executed in
rate mode as well. The bar labeled Gmean represents the ge-
ometric mean improvement over these fourteen workloads.

As the potential is low, the improvements from all designs
are lowered compared to the detailed study. However, the
broad trend remains the same. On average, LH-Cache im-
proves performance by 3%, SRAM-Tag by 7.3%, and Alloy
Cache by 11%. Thus, the Alloy Cache continues to outper-
form both LH-Cache and SRAM-Tag.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

LH-Cache SRAM-Tag Alloy Cache

les
lie

3d
_r

wrf_
r 

ca
ctu

s_
r 

ze
us

mp_
r 

de
alI

I_
r 

bz
ip2

_r
 

xa
lan

c_
r 

pe
rlb

_r
 

hm
mer_

r 

gr
om

ac
s_

r 

as
tar

_r
 

h2
64

_r
 

sje
ng

_r
 

go
bm

k_
r

Gmea
n 

Figure 11: Performance impact for other SPEC workloads

6.5. Impact of Odd Size Burst Length

Our proposal assumes a burst length of five for the Alloy
Cache, transferring 80 bytes on each DRAM cache access.
However, conventional DDR specifications may restrict the
burst length to a power-of-two even for stacked DRAM. If
such a restriction exists, then the Alloy Cache can stream out
burst of eight transfers (total 128 bytes per access). Our eval-
uation shows that a design with a burst of 8 provides 33%
performance improvement on average, compared to 35% if
the burst length can be set to five. Thus, our assumption of
odd-size burst length has minimal impact on the performance
benefit of Alloy Cache. Note that die-stacked DRAMs will
likely use different interfaces than conventional DDR. The
larger number of through-silicon vias could make it easier to
provide additional control signals to, for example, dynami-
cally specify the amount of data to be transferred.

6.6. Potential Room for Improvement

Our proposal is a simple and practical design that signifi-
cantly outperforms the impractical SRAM-Tag design, but
there is still room for improvement. Table 7 compares the
average performance of Alloy Cache + MAP-I, with (a) per-
fect Memory Address Prediction (Perf-Pred) (b) IDEAL-LO,
a configuration that incurs minimum latency and bandwidth
and has Perf-Pred and (c) IDEAL-LO with no tag overhead,
so all of the 256MB space is available to store data.

Table 7: Room for improvement

Design Performance
Improvement

Alloy Cache + MAP-I 35.0%
Alloy Cache + PerfPred 36.6%

IDEAL-LO 38.4%
IDEAL-LO + NoTagOverhead 41.0%

We observe that for our design we would get 1.6% addi-
tional performance improvement from a perfect predictor and
another 1.8% from an IDEAL-LO cache. Thus, our practi-
cal solution is within 3% of the performance of an idealized
design that places tags in DRAM. If we can come up with
a way to avoid the storage overhead of tags in DRAM, then
there is another 2.6% improvement possible. While all of the
three optimizations show small opportunity for improvement,

245



we must be mindful that solutions to obtain these improve-
ments must incur minimal latency overheads, otherwise the
marginal improvements may be quickly negated.

6.7. How About Two-Way Alloy Caches?

We also evaluated two-way Alloy Caches that stream out two
TAD entries on each access. While this improved the hit-rate
from 48.2% to 49.7%, we found that the hit latency increased
from 43 cycles to 48 cycles. This was due to increased burst
length (≈2x), associated bandwidth consumption (≈2x), and
the reduction in row buffer hit rate. Overall, the performance
impact of degraded hit latency outweighs the marginal im-
provement from hit-rate. We envision that future researchers
will look at reducing conflict misses in DRAM caches (and
we encourage them to do so); however, we advise them to
pay close attention to the impact on hit latency.

7. Conclusion

This paper analyzed the trade-offs in architecting DRAM
caches. We compared the performance of a recently-proposed
design (LH-Cache) and an impractical SRAM-based Tag-
Store (SRAM-Tags) with a latency-optimized design, and
show that optimizing for latency provides a much more ef-
fective DRAM cache than optimizing simply for hit-rate. To
obtain a practical and effective latency-optimized design, this
paper went through a three-step process:

1. We showed that simply converting the DRAM cache from
high associativity to direct mapped can itself provide good
performance improvement. For example, configuring LH-
Cache from 29-way to 1-way enhances the performance
improvement from 8.7% to 15%. This happens because of
the lower latency of a direct-mapped cache as well as the
ability to exploit row buffer hits.

2. Simply having a direct-mapped structure is not enough.
A cache design that creates a separate “tag-store” and
“data-store” still incurs the tag-serialization latency even
for direct-mapped caches. To avoid this tag serialization
latency, we propose a cache architecture called the Alloy
Cache that fuses the data and tag together into one storage
entity, thus converting two serialized accesses for tag and
data into a single unified access. We show that a direct-
mapped Alloy Cache improves performance by 21%.

3. The performance of the Alloy Cache can be improved by
handling misses faster, i.e., sending them to memory be-
fore completing the tag check in the DRAM cache. How-
ever, doing so with a MissMap incurs megabytes of stor-
age overhead and tens of cycles of latency, which negated
much of the performance benefit of handling misses early.
Instead, we present a low-latency (single cycle), low stor-
age overhead (96 bytes per core), highly accurate (95%
accuracy) hardware-based Memory Access Predictor that
enhances the performance benefit of Alloy Cache to 35%.

Optimizing for latency enabled our proposed design to pro-
vide better performance than even an impractical option of
having the tag store in an SRAM array (24% improvement),
which would require tens of megabytes of storage. Thus, we
showed that simple designs can be highly effective if they can
exploit the constraints of the given technology.

While the technology and constraints of today are quite dif-
ferent from the 1980’s, in spirit, the initial part of our work is
similar to that of Mark Hill [6] from twenty-five years ago,
making a case for direct-mapped caches and showing that
they can outperform set-associative caches. Indeed, some-
times “Big and Dumb is Better” [1].

Acknowledgments

Thanks to André Seznec and Mark Hill for comments on ear-
lier versions of this paper. Moinuddin Qureshi is supported by
NetApp Faculty Fellowship and Intel Early CAREER award.

References
[1] Quote from Mark Hill’s Bio (short link http://tinyurl.com/hillbio):.

https://www.cs.wisc.edu/event/mark-hill-efficiently-enabling-
conventional-block-sizes-very-large-die-stacked-dram-caches.

[2] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple but
Effective Heterogeneous Main Memory with On-Chip Memory Con-
troller Support. In Supercomputing, 2010.

[3] M. Farrens, G. Tyson, J. Matthews, and A. R. Pleszkun. A modified
approach to data cache management. In MICRO-28, 1995.

[4] M. Ghosh and H.-H. S. Lee. Smart Refresh: An Enhanced Memory
Controller Design for Reducing Energy in Conventional and 3D Die-
Stacked DRAMs. In MICRO-40, 2007.

[5] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache miss
behavior: is it sqrt(2)? In Computing Frontiers, 2006.

[6] M. D. Hill. A case for direct-mapped caches. IEEE Computer, Dec
1988.

[7] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian. CHOP: Adaptive
filter-based dram caching for CMP server platforms. In HPCA-16,
2010.

[8] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi. Using dead
blocks as a virtual victim cache. In PACT-19, 2010.

[9] G. H. Loh and M. D. Hill. Addendum for “Efficiently
enabling conventional block sizes for very large die-stacked
DRAM caches”. http://www.cs.wisc.edu/multifacet/papers/micro11_
missmap_addendum.pdf.

[10] G. H. Loh and M. D. Hill. Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches. In MICRO-44, 2011.

[11] G. H. Loh and M. D. Hill. Supporting very large DRAM caches with
compound access scheduling and missmaps. In IEEE Micro TopPicks,
2012.

[12] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell. Optimizing Communication and
Capacity in a 3D Stacked Reconfigurable Cache Hierarchy. In HPCA-
15, 2009.

[13] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. En-
abling efficient and scalable hybrid memories using fine-granularity
dram cache management. Computer Architecture Letters, Feb 2012.

[14] E. Perelman et al. Using SimPoint for accurate and efficient simulation.
ACM SIGMETRICS Performance Evaluation Review, 2003.

[15] M. K. Qureshi. Memory access prediction. U.S. Patent Application
Number 12700043, Filed Feb 2010, Publication Aug 2011.

[16] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. Emer.
Adaptive insertion policies for high-performance caching. In ISCA-34,
pages 167–178, 2007.

[17] A. Seznec and P. Michaud. A case for (partially) tagged geometric
history length branch prediction. In Journal of Instruction Level Par-
allelism, 2006.

[18] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
and J. Emer. Ship: signature-based hit predictor for high performance
caching. In MICRO-44, 2011.

[19] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM cache
architectures for CMP server platforms. In ICCD, 2007.

246


