
166 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributor

As DRAM systems face scalability challenges, the architecture community
has started investigating alternative technologies for main memory. These
emerging memory technologies tend to suffer from the problem of limited write
endurance. This problem is exacerbated because of the high variability in lifetime
across different cells, resulting in weaker cells failing much earlier than nominal
cells. Ensuring long lifetimes under high variability requires that the design
can correct a large number of errors for any given memory line. Unfortunately,
supporting high levels of error correction for all lines incurs significantly high
overhead, often exceeding 10 percent of overall memory capacity. We propose
to reduce the storage required for error correction by exploiting the observation
that only a few lines require high levels of hard-error correction. Therefore,
prior approaches that uniformly allocated a large number of error correction
entries for all lines are inefficient, as most (more than 90 percent) of these entries
remain unused. We propose Pay-As-You-Go (PAYG), an efficient hard-error
resilient architecture that allocates error correction entries in proportion to the
number of hard faults in the line. We describe a storage-efficient and low-latency
organization for PAYG. Compared to uniform error correction, PAYG requires
one third the storage overhead and yet provides 13 percent more lifetime.

Introduction
As DRAM-based memory systems get limited by power and scalability
challenges, architects are turning their attention towards emerging memory
technologies for building future systems. Phase Change Memory (PCM) has
emerged as one of the most promising technologies suitable for incorporation
into main memory.[3] While PCM has several desirable attributes such as
improved scalability and nonvolatility, the physical properties of PCM dictates
that only a limited number of writes can be performed to each cell. On average,
PCM devices are expected to last for about 10 to the 7th and 10 to the 8th,
writes per cell.[1] Once a cell reaches its end of life, it gets stuck in one of the
states, manifesting itself as a hard error. The problem of limited lifetime is further
exacerbated by the high variability in lifetime across different cells due to process
variations. This means a small percentage of cells that have a significantly lower
than average lifetime end up determining the overall lifetime of the system.

Ensuring reasonable system lifetime under high variability requires that the
design provision large amounts of error correction for PCM lines. As we
are concerned with lifetime failures that manifest themselves as hard errors,
we focus only on hard-error correction in this article. Recent studies have
proposed write-efficient error correction schemes such as Error Correction

“…a small percentage of cells that
have a significantly lower than average
lifetime end up determining the
overall lifetime of the system.”

Moinuddin K. Qureshi
Georgia Institute of Technology

A CAsE For NoNuNIForM FAulT TolErANCE
IN EMErGING MEMorIEs

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 167

Pointers (ECP)[5] and SAFER[6] to tolerate a large number of hard faults in
memory lines. While our analysis is applicable to any hard-error correction
scheme, we discuss ECP for our studies owing to its simplicity.

ECP corrects a failed bit in a memory line by recording the position of the bit
in the line and its correct value. For example, a 64-byte (512-bit) line needs
a 9-bit pointer plus 1 replacement bit resulting in a total of 10 bits for each
ECP entry. Our evaluations show that correcting six errors per line can provide
a lifetime of about 6.5 years for our baseline (the configuration is described
in the section “Experimental Methodology”). Provisioning for 6 bits of error
correction requires an overhead of 61 bits (60 bits of ECP plus one full bit
to indicate that all ECP entries are used) per line, which translates to a total
storage overhead of 12 percent. Note that this level of error correction would
not be an optional feature in future PCM systems but rather something that
would be essential to enable meaningful operation of the PCM array. Given
that the memory market is low margin and highly cost-sensitive, it is important
that the storage overhead of such necessary error correction be minimized,
while retaining the desired levels of reliability. Thus, the 12 percent storage
overhead of ECP may very well prove to be too high for wide-scale adoption
of PCM.

To reduce the storage overhead of error correction, we begin by pointing to
the inefficiency with the ECP approach that uniformly allocates six ECP
entries per line. Our analysis shows that very few lines are weak, and more
than 95 percent of the lines require no more than one ECP entry per line.
Therefore, we would expect that with uniform ECP-6, the majority of the ECP
entries would remain unused. Table 1 shows the distribution of lines that use
a given number of ECP entries at different aging levels (age normalized to the
lifetime under ECP-6, or 6.5 years). The average number of ECP entries used
is also shown.

Number Writes
(Normalized Age)

Number of ECP Entries Used per Line Average Number of
ECP Entries Used0 1 2 3–6

50% 99.02% 0.97% 0.00% 0.00% 0.010

90% 84.76% 14.02% 1.16% 0.07% 0.165

95% 79.63% 18.14% 2.06% 0.17% 0.228

 100% 73.24% 22.82% 3.55% 0.40% 0.311

Table 1: Inefficiency of Uniform ECP-6. On average, only 0.3 out of six
entries eventually gets used
(Source: Moinuddin K. Qureshi, 2013)

As the number of writes increase, the rate of faults increases, and hence more
and more of the allocated ECP entries get used. However, even at the end of
the expected system lifetime under ECP-6, less than 5 percent of the lines
utilize more than one ECP entry. On average, only 0.3 entries out of the
allocated six entries of ECP get used, indicating significant inefficiency with

“Our analysis shows that very few lines
are weak, and more than 95 percent
of the lines require no more than one
ECP entry per line.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

168 | A Case for Nonuniform Fault Tolerance in Emerging Memories

uniform ECP. If we could allocate ECP entries only to lines that need those
entries, we would reduce the required ECP entries by almost 20X. Ideally,
we want to allocate more ECP entries to weak lines (lines with large number
of errors) and fewer ECP entries to other lines. Unfortunately, uniform ECP
allocates a large (and wasteful) number of ECP entries with each line a priori,
being agnostic of the variability in lifetime of each line.

We propose Pay-As-You-Go (PAYG, pronounced as “page”), an error correction
architecture that allocates error correction entries in response to the number of
errors in the given memory line. To maintain low latency of error correction,
PAYG splits the correction entries into two parts: first, a per-line Local Error
Correction (LEC) that can correct up to one error per line and is sufficient for
95 percent of the lines; and second, a Global Error Correction (GEC) pool that
contains tagged ECP entries and provides error correction entries for lines that
have more errors than can be handled by the LEC.

We describe several versions of PAYG, each with varying effectiveness, storage
overhead, and latency overhead. Our evaluations show that PAYG reduces the
storage overhead of error correction by a factor of 3.1X compared to ECP-6
(19.5 bits per line vs. 61 bits per line) while still obtaining 13 percent longer
lifetime. Thus, PAYG obtains the best of both worlds in that it achieves the
lifetime corresponding to strong levels of error correction while maintaining
the low storage overhead that is sufficient for most of the lines.

Background
The problem of limited write endurance is common to many of the emerging
memory technologies. Without loss of generality, this article analyzes Phase Change
Memory (PCM) as an example of emerging memory technology. PCM suffers
from the limited endurance in that the memory cells cease to have the ability to
store data after a certain number of writes. Such cells get stuck to one of the states
and manifest themselves as hard errors.[5] Designing a robust PCM system that can
last for several years requires carefully architecting the system to tolerate such errors.

Problem: Variability in Lifetime
ITRS[1] projections (and various other studies) indicate that PCM cells can be
expected to have an average endurance in the range of 107–108 writes. While
this range of endurance is much lower than the ∼1015 endurance of DRAM,
it is still sufficient to architect a system with several (more than five) years of
lifetime. Unfortunately, the lifetime of PCM cells is not uniform, and process
variability results in significant variations even within adjacent cells in the same
die.[2][5] This causes certain cells to have much lower endurance than the average
population. Such weak cells fail much earlier than the typical cell and can
reduce the lifetime of the system significantly to the tune of a few weeks.

The variation in lifetime is typically expressed as normalized standard deviation
(COV) around the mean. Previous studies on variability of PCM endurance
have used COV values between 10–30 percent of the mean.[2][5][6] In our

“…Pay-As-You-Go (PAYG,
pronounced as “page”), an error
correction architecture that allocates
error correction entries in response
to the number of errors in the given
memory line.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 169

analysis, we use a default COV value of 20 percent. With a COV of 20 percent,
the cell failure probability at the very start is in the range of 10−6. Given that a
typical main memory system contains tens of billions of cells, even this small
failure probability would result in several thousand cells having bit failures,
which in turn would result in a drastic reduction in the overall system lifetime
because of variability.

Prior Work
The lifetime of a PCM system can be increased to a useful range if the system
can tolerate errors. Hamming code-based error correction, which is typically
employed in memory systems, can tolerate transient errors as well as hard
errors. Unfortunately, such codes are write intensive and can further exacerbate
the endurance problem in PCM. Fortunately, identifying the endurance-related
write failures is easy as it can be done by simply performing a verify read after
completing a write.1 If the two values do not match then the nonmatching bit
is likely to be a hard error.

Recent studies[5][6] have focused on developing write-efficient methods to
provide error correction of hard faults, relying on this simple detection
property of endurance-related failures.

One such proposal is Error Correcting Pointers (ECP).[5] ECP performs error
correction by logging bit errors in a given line. For example, for a line of
64 bytes (512 bits), a 9-bit pointer is used to point to the failing bit and an
additional bit to indicate the correct value. This scheme can correct one error
and is referred to as ECP-1. The concept can be extended to correct multiple
bits per line. Intelligent precedence rules allow correction of errors even in
the ECP entries. A generalized scheme that can correct N errors per line is
called ECP-N. A full bit per line indicates if all the ECP entries associated
with the line are used. Thus, the storage overhead of ECP-N is (10N + 1) bits
per line.

Need to Correct Several Errors per Line
Given that transient faults are rare, a typical memory system is designed to
handle at most one or two transient faults per line. However, unlike transient
faults, endurance-related hard errors accumulate over time. Therefore, we
need to provide large amount of error correction per line in order to obtain
reasonable system lifetime. Figure 1 shows the mean time to first uncorrectable
error for our baseline system, where the number of ECP entries per line is
varied from 1 to 12. All lifetime numbers are normalized to the case of zero
variance. To show dependence of lifetime on variance, we show data for
different COVs. For COV = 20 percent, ECP-6 obtains 35 percent of ideal

1 If the system supports some amount of transient fault protection with each line, then we can
identify the hard faults without performing the verify read. For example, the position of a bit that
causes a failure with a transient fault protection mechanism can be tracked. Given that transient
faults are rare, if the same bit position is causing frequent errors then that bit is likely to be a
hard fault. Such a bit can then be corrected using a hard-error correction mechanism. This article
assumes that an efficient means of detecting endurance-related failures exists and focuses only on
correcting such failures.

“…a typical main memory system
contains tens of billions of cells, even
this small failure probability would
result in several thousand cells having
bit failures,…”

100

N
or

m
. S

ys
te

m
 L

ife
tim

e
(w

rt
 C

O
V

 5
 0

%
) 90

80

70

60

50

40

30

20

10

0 1 2 3 4 5
ECP-N (Num Error Correction Per Line)

6 7 8 9 10 11 12
0

COV 5 10%
COV 5 15%
COV 5 20%

Figure 1: Normalized value of system lifetime
(defined as the mean time of first uncorrectable
error) as a function of the ECP strategy. The
system lifetime is normalized with respect to a
memory cell with 0% COV. Note that at COV
of 20%, ECP-6 obtains 35% of theoretical
maximum lifetime
(Source: Moinuddin K. Qureshi, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

170 | A Case for Nonuniform Fault Tolerance in Emerging Memories

lifetime. For our baseline, this translates to a lifetime of 6.5 years, which is
in the desired range of 5–7 years for a typical server. ECP-6 incurs storage of
61 bits per line, which translates to 12 percent storage overhead. Given that
memory chips are extremely cost sensitive, such overhead may be too high for
practical use.

Inefficiency of Traditional Approach
For a memory of N lines, a PCM system would provision a total of 6N ECP
entries to implement ECP-6. The problem with such an approach is that it
results in significantly underutilized ECP entries. Because weak lines are few,
only a few lines require high levels of error correction. Most of the other lines
do not use the allocated ECP entries. Figure 2 shows the failure probability
as the number of writes is increased (under COV = 20 percent), normalized
to a system that has zero variance. The failure of line (or system) occurs
when there is at least one uncorrectable error for a given amount of ECP.
The expected time to failure is computed as the time at which the failure
probability is 50 percent.

1.0

Fa
ilu

re
 P

ro
ba

bi
lit

y

Total Writes Performed as a Percentage of Max Writes in a System Zero Variance

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Bit

Line-ECP0

Line-ECP1

Line-ECP2

Line-ECP6

System-ECP6

Figure 2: Failure probability vs. the percentage of writes assuming a COV = 20%, normalized to a system that
has zero variance. “Bit” shows probability of failure of a single bit. “Line-ECPN” shows the probability of failure of
a single line if N bits can be corrected. “System-ECP6” shows the probability that “at least one line fails out of all
the lines” when each line has ECP-6. Observe that when the system failure is expected to occur under ECP-6,
the probability of line failure with ECP-1 is approximately 3.5%
(Source: Moinuddin K. Qureshi, 2013)

Given that memory has millions of lines, the line failure probability must be
very low (much less than 10−6) to achieve a low system failure probability.
When the system failure is expected to occur under ECP-6, the probability
of line failure with ECP-1 is approximately 3.5 percent. This implies that
fewer than 5 percent of the lines have more than one failed bit at the time of
system failure, indicating significant inefficiency in the traditional approach
that allocates six ECP entries for all lines. We note that ECP-1 is sufficient in
the common case, and we need higher levels of ECP for very few lines. Ideally,

“ECP-6 incurs storage of 61 bits per
line, which translates to 12 percent
storage overhead. Given that memory
chips are extremely cost sensitive,
such overhead may be too high for
practical use.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 171

we would like to retain the robustness of ECP-6 while paying the hardware
overhead of only ECP-1.

We base our solution on the insight that hard errors are quite different from
transient faults. We need to allocate the storage for the error detection of
transient faults up-front—before the error occurs. However, for hard errors,
we can detect the error using a separate mechanism and allocate the error
correction entry only when the error occurs. We discuss our experimental
methodology before describing our proposal.

Experimental Methodology
The following section describes our experimental methodology.

Baseline Configuration
We assume a memory configuration that is designed with PCM banks each with
1 GB memory. Each bank has one write port and the write operation can be
performed with a latency of 1 microsecond. The size of the line in the last-level
cache is 64 bytes, which means there are 224 lines in each bank. All operations on
memory occur at line-size granularity. Given that each bank is a separate entity
and can be written independently, we focus on determining the lifetime of one
bank. We assume that each line has an endurance of 225 writes. If endurance
variance was 0 percent, we would expect the baseline to have a lifetime of
18 years.2 ECP-6 obtains 35 percent of this lifetime, which translates to 6.5 years.

Assumptions
We are interested in evaluating the lifetime of memory, which is typically in the
range of several years. Modeling a system for such a long time period inevitably
involves making some simplifying assumptions. We make the following
assumptions in order to evaluate memory lifetime:

 ● We assume the lifetime of each memory cell to follow a normal distribution
without any correlation between neighboring cells. We assume a mean
lifetime of 225 writes[4] and a COV of 20 percent of the mean.

 ● We assume perfect wear-leveling to focus only on the impact of the error
correction schemes. This implies that all the memory lines will receive the
same number of writes.

 ● A write request to memory is converted into a sequence of write requests
followed by a read request to detect hard faults. We assume that this
technique can identify hard faults with 100 percent accuracy.

Figure of Merit
The endurance-limited lifetime of the system can be defined as the number
of writes performed before encountering first uncorrectable error. Thus, for a
given scheme, lifetime is determined by the first line that gets more errors than

2 Each of the 224 lines can be written 225 times, for a total of 249 writes. With write latency of
1 microsecond, we can perform 106 writes/second or 244.8 writes per year, hence, a lifetime of
18 years, even under continuous write traffic.

Intel® Technology Journal | Volume 17, Issue 1, 2013

172 | A Case for Nonuniform Fault Tolerance in Emerging Memories

can be corrected. ECP-6 obtains a lifetime of 6.5 years, which is in the range of
5–7 years of lifetime for a typical server. We want a lifetime in this range; hence
all lifetime numbers in our evaluation are normalized to ECP-6. We define
Normalized Lifetime (NL) as follows, and use this as the figure-of-merit in our
evaluations:

NL = Total Line Writes Before System Failure × 100%
 ___________________________________ Total Line Writes Before System Failure With ECP 6 (1)

Pay-As-You-Go Error Correction
We can architect an efficient and robust design by allocating error correction
entries only on demand, as and when an error occurs. In fact, one can reduce
the percentage of unused ECP entries to zero by having a fully associative
structure where each entry contains one tagged ECP-1 unit. Unfortunately, such
a design would incur intolerable latency as each memory access would need to
search through hundreds of thousands of error-correction entries. Our proposed
design, PAYG, provides storage-efficient on-demand error correction while
incurring negligible latency overhead. In this section, we first start with a naive
design for PAYG, identify its shortcomings, and then propose the robust design.

Architecture of Naive PAYG
When failure occurs under ECP-6, we observe that 73 percent of the lines have
0 errors (Table 1). Hence, error correction overhead could be decreased by ∼4x,
by allocating ECP-6 only for lines that have at least one error. This simplified
architecture is called Naive-PAYG, and is shown in Figure 3.

Main Memory

Way (Num GEC entries per set)

Global Error Correction (GEC) Pool
GEC Entry

V TAG ECP–NSets

Memory Line (64B)OFB
O

Figure 3: Architecture of Naive-PAYG (newly added
structures are shaded)
(Source: Moinuddin K. Qureshi, 2013)

Each line contains an overflow bit (OFB) to indicate if the line has at least one
failed bit.3

A Global Error Correction (GEC) pool provides error correction entries for
such lines. Each GEC entry contains a valid bit, a tag (to identify the owner

3 A stuck-at-zero OFB can be a single point of failure. Under COV = 20 percent, the probability
that a bit will fail at first write is 0.3 × 10−6. Given 16 million lines in memory, 4.8 lines are
expected to have such a failure on average. We avoid this problem by using two-way replication for
the OFB bit. We assume that OFB is set to 1, if any of the replicated bits is 1. The probability that
both the replicated bits of OFB are stuck-at-zero is negligible (10−13).

“…PAYG, provides storage-efficient
on-demand error correction while
incurring negligible latency overhead.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 173

line), and one or more ECP entries (ECP-6 in our case). GEC is organized
as a set-associative structure. Given that memory designs are highly
optimized for a given array size, we want to use a line-size granularity for
GEC as well. Therefore one set of GEC is sized such that it fits in 64 bytes,
translating to seven GEC entries per set. We found that such a design is
noncompetitive compared to even uniform ECP-6 because it suffers from
three problems:

 ● The set associative organization needs a much larger number of entries
(∼8x) than a fully associative structure to reach the same level of
effectiveness.

 ● Even with the filtering provided by the OFB, 25 percent of the lines can
still incur a latency of two accesses (one for main memory and second for
GEC), resulting in significant slowdowns.

 ● Most ECP entries remain unused as six ECP entries are allocated for lines
with even one error.

We now describe efficient solutions to each of these problems, leading up to
our final design.

Addressing Problem 1: Shortcoming of Set Associative Structure for
GEC Pool
In a set-associative organization, each set has only a fixed number of
ways, which means that the first set to exceed its allocation causes an
uncorrectable failure. So, an important question in determining efficiency
of the set-associative structure is to analyze the number of GEC entries
occupied before one of the sets overflows. Given that most of the efficient
wear-leveling algorithms[4][7] randomize the address space in PCM, we
assume that failures occur at random lines in memory, and that any access
pattern gets spread over the entire memory (due to remapping from
wear leveling). Based on this randomized address space property, we can
analyze the effective capacity utilization of a set-associative structure using
an analogous buckets-and-balls problem, where a bucket represents one
of the sets and a ball represents one of the occupied ways. If there are
N buckets, each of which can hold B balls, then the collection can hold a
maximum of NB balls. However, if balls are thrown at random, then how
many balls can be thrown before one of the buckets overflows? Our Monte
Carlo simulations indicate that a 7-way or 8-way GEC pool is only about
12 percent occupied when one of the sets overflows, indicating about
8x inefficiency with a set-associative structure.

Ideally, we want the efficiency of a fully associative structure (where all entries
get used) and latency of set-associative structure (single low-latency index). To
handle these contradictory requirements, we use a hash-table-with-chaining
structure. It consists of two tables: first, the Set Associative Table (SAT) and
second, the Global Collision Table (GCT). SAT provides a single-index low-
latency access to the GEC pool, while GCT provides flexibility in placement.
Both SAT and GCT are structurally identical and differ only in the way they

“Ideally, we want the efficiency of a
fully associative structure (where all
entries get used) and latency of set-
associative structure (single low-latency
index).”

Intel® Technology Journal | Volume 17, Issue 1, 2013

174 | A Case for Nonuniform Fault Tolerance in Emerging Memories

are indexed. Each GEC set (both in SAT and GCT) also contains a pointer
(GCTPTR) that points to a location in the GCT.4 The proposed GEC
structure is shown in Figure 4.

GEC Entry

PTR

1

0

OFB

GEC Entry

Set Associative Table (SAT)

Global Collision Table (GCT)

PTR1

OFB

GCT–Head

PTR

Figure 4: Architecture of scalable GEC pool (Set Associative Table + Global Collision Table)
(Source: Moinuddin K. Qureshi, 2013)

Reading GEC Entries
For obtaining a GEC entry, SAT is accessed first in a set that is indexed by
some bits of the line address. If there is no tag match in the set, then the
GCTPTR of that set identifies the GCT set that must be checked. GCT can be
indexed only in this manner. If there is a tag match in the GCT row, then GEC
entries can be obtained. If there is no match, the GCTPTR in that set identifies
the next GCT set that must be checked. The traversal continues until a GCT
entry with matching tag (or a set with OFB = 0) is found.

Allocating GEC Entries
Initially, all GCT sets remain unallocated. These sets get allocated to a set of
SAT only on overflow. To aid this allocation, a register called GCT-Head keeps
track of the number of GCT entries that have been allocated. When one of the
set of SAT or GCT overflows, the GCTPTR of that set is initialized to GCT-
Head and the OFB associated with that set is set to 1. The newly allocated
set of GCT provides as many GEC entries as the associativity of GCT. The
GCTPTR of this newly allocated entry is marked invalid and OFB is set to 0
(to indicate end of traversal).

The GCT-Head is incremented after every GCT allocation. When the value
of GCT-Head reaches the number of sets in GCT, it indicates an uncorrectable
error.

We use a GCT that has half as many sets as SAT. Table 2 shows the effective
capacity if there are N sets in SAT and 0.5N sets in GCT, as the associativity of
SAT is varied. For an 8-way SAT, our organization obtains an effective capacity
of more than 70 percent of the allocated 1.5N entries, much higher than the
12 percent with a set-associative structure.

4 We use two-way replication for GCTPTR for tolerating errors. We force the GCTPTR with
a single stuck-at-bit to point to either location all-zeros or all-ones (both locations are reserved).
On mismatch between the two copies of GCTPTR, the entry pointing to the reserved location is
ignored. The probability of two bits stuck in GCTPTR is negligible (10−12).

“…our organization obtains an
effective capacity of more than 70
percent of the allocated 1.5N entries,
much higher than the 12 percent with
a set-associative structure.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 175

Associativity of SAT 1 2 4 8

Effective Capacity 1.19N 1.15N 1.11N 1.08N

Table 2: Effective capacity utilization (of 1.5N entries) with proposed
(sAT+GCT) organization
(Source: Moinuddin K. Qureshi, 2013)

In the common case, we want the access to be satisfied by SAT and not
the GCT, as GCT incurs higher latency due to multiple memory accesses.
Our Monte Carlo simulations show that until about half the entries in SAT
get occupied, the probability of single GCT access remains low (less than
1 percent). Thus, the proposed design has a good storage efficiency as well as
low latency.

Addressing Problem 2: Local Error Correction for
Low-Latency
One of the shortcomings of the naive design is that it accesses the GEC for
a line with even one error. We can reduce latency and storage requirements
for GEC by allocating a small amount of error correction with each line.
For example, we observe that with ECP-1, the likelihood of failure is less
than 4 percent even at the end of system lifetime. Therefore if we allocate
ECP-1 with each line, we can reduce the GEC access rate as well as demand
significantly. We propose to have such Local Error Correction (LEC) with
each line. When the number of errors in the line exceeds what can be
corrected by LEC, the OFB associated with that line is set and an entry from
GEC is allocated. With ECP-1 in LEC, each GEC entry would need to store
only ECP-5, which means the GEC can be an 8-way structure in a 64-byte
space.

Addressing Problem 3: Fine-Grained On-Demand
Allocation for Improved Efficiency
Another source of inefficiency in the naive design is that it allocates a large
number of ECP entries for each assignment of a GEC entry. While this
amortizes the tag overhead, it results in severe inefficiency, as most of the
allocated ECP entries remain unused. The utilization of ECP entries can
be increased by reducing the number of ECP entries in each GEC entry.
For example, if each GEC entry contained only ECP-1, it would result in
significant increase in utilization of ECP entries, even if it would mean relative
increase in tag overhead. With ECP-1 in GEC entry, we can fit approximately
24 entries in the space of 64 bytes, therefore the associativity of GEC (SAT as
well as GCT) would be 24. As there can be multiple tag hits in a given GEC
set, we use the same precedence rule as used in the ECP proposal, that is, GEC
entries are allocated from right to left, and younger entries have precedence
over older entries. Our design restricts that all GEC entries of a given line must
be placed in the same set. If a line needs more GEC entries and that set is full,
then all ECP entries of the line are invalidated from the GEC set and relocated
into a new set in GCT.

Intel® Technology Journal | Volume 17, Issue 1, 2013

176 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Proposed PAYG: Tying It All Together
PAYG obtains both high storage efficiency and low latency by leveraging the
flexible structure for GEC, a hybrid LEC-GEC organization, and fine-grained
allocation. Figure 5 shows the overall architecture of our proposed PAYG
design.

Main Memory

Memory Line (64B)O LEC
Over Flow Bit

O LECSAT

GCT

Global Error Correction (GEC) Pool

PTR

O LEC PTR

Figure 5: Proposed Architecture of PAYG
(Source: Moinuddin K. Qureshi, 2013)

The LEC handles the common case of one-or-zero errors in a line for more
than 95 percent of the lines. The GEC provides a storage-efficient low-
latency on-demand allocation of ECP entries for lines that have more than
one error. Each GEC entry would contain only ECP-1 for high utilization
of ECP entries. To reduce the array design overhead, we assume the same
memory array for GEC (SAT and GCT) as the main memory, and provision
the LEC + OFB for GEC as well, to maintain uniformity (this also allows
the GEC size to be changed freely at runtime by the OS). An access to main
memory with OFB = 0 is satisfied by single access. When OFB = 1, the GEC
is accessed, one or more memory lines are read, matching GEC entries are
obtained, ECP information is retrieved, and the line or lines get corrected.

Unlike uniform ECP-6, PAYG does not have to limit the maximum error
correction allocated to a line. Thus, a weak line can use as many ECP entries
as needed (limited only by the number of GE entries per line). This allows
PAYG to outperform even ECP-6. The only real limiter of lifetime with PAYG
is the number of GEC entries, as the likelihood of 24 or more errors per line is
negligible for our system.

Results and Analysis
Our proposed design has three key components: the scalable structure for the
GEC pool, Fine Grained Allocation (FGA), and Local Error Correction (LEC).
In this section, we present the key results highlighting the importance of each
of these components. We then analyze the storage and latency overheads, and
also the impact of different variability scenarios on the effectiveness of our
proposal.

“The LEC handles the common case
of one-or-zero errors in a line for
more than 95 percent of the lines. The
GEC provides a storage-efficient low-
latency on-demand allocation of ECP
entries…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 177

Importance of Scalable GEC Pool
The key component of PAYG that provides scalability and efficiency is
the architecture of the GEC pool. The first set of results we present are to
emphasize the need for such a scalable structure. For this analysis, we assume
a version of PAYG that has LEC implemented as ECP-1. The GEC does not
have fine-grained allocation, which means each GEC entry contains ECP-5,
and each set of GEC (in both SAT and GCT) contains 8 GEC entries. We call
this configuration PAYG-NoFGA. Figure 6 compares the normalized lifetime
of uniform ECP to that with PAYG-NoFGA. The left sets of bars are for ECP
where the level of ECP is varied from 1 to 6. The middle sets of bars are for
PAYG-NoFGA without GCT, where the number of sets in SAT is varied from
32K to 1024K. The right sets of bars are for PAYG-NoFGA with 128K sets in
SAT and GCT sets vary from 2K to 64K.

Uniform ECP

ECP-1

ECP-2

ECP-3

ECP-4

ECP-5

ECP-6
32

K
64

K
12

8K
25

6K
51

2K

10
24

K 2K

Num_GCT_SetsNum_SAT_Sets

4K 8K 16
K

32
K

64
K

PAYG-NoFGA-NoGCT PAYG-NoFGA(SAT_Sets 5 128K)

Li
fe

tim
e

N
or

m
al

iz
ed

 to
 E

C
P

-6
 (%

) 100

90

80

70

60

50

40

30

20

10

0

Figure 6: Lifetime of uniform ECP and PAYGNoFGA. Without GCT, PAYG-NoFGA needs
1024 sets (6.25% storage overhead) for lifetime comparable to ECP-6. With GCT, this
reduces to (128K + 64K = 192K), 5x lower
(Source: Moinuddin K. Qureshi, 2013)

The first observation is that ECP-6 improves lifetime compared to ECP-1
by more than 10x. Unfortunately, ECP-6 incurs a storage overhead of 12
percent of memory capacity. The second observation is that PAYG-NoFGA
needs a large number of sets (1 million) to achieve the lifetime as ECP-6,
resulting in significantly high storage overhead (6.25 percent). However, the
presence of GCT decreases storage requirement significantly. Combining
128K sets in SAT with 64K sets in GCT can provide a lifetime slightly
higher than ECP-6 (this occurs because PAYG does not cap maximum
error correction entries to six per line, so a few lines end up using ECP-7).
The storage overhead of this combination would be 128K + 64K = 192K
sets (1.2 percent overhead), which is 5x lower. Thus, a SAT-GCT based
architecture is much more storage efficient than a simple set-associative
structure. Unless specified otherwise, we will use 128K-set SAT combined
with 64K-set GCT for the rest of the article.

“…SAT-GCT based architecture is
much more storage efficient than a
simple set-associative structure.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

178 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Importance of Fine-Grained Allocation
PAYG-NoFGA allocates five ECP entries with each GEC entry, most of which
remain unused. FGA improves the utilization of ECP entries by reducing the
number of ECP entries in each GEC entry. Table 3 shows the number of GEC
entries that can be packed in one set (64 bytes), when the number of ECP entries
in each GEC entry is varied from one to five. The tag size for our GEC structures
is 7 bits, and we replicate the valid bit in GEC entry for fault tolerance. We also
reserve 32 bits for GCTPTR (16 bits, 2-way replicated), which means only 480
bits per line are available for GEC entries. As the number of ECP entries per
GEC entry decreases, the total number of GEC entries per each set increases.

Number of ECP in each GEC entry 1 2 3 4 5

Number of tag bits + valid bits 9 9 9 9 9

Number of bits for ECP 11 21 31 41 51
Size of 1 GEC entry (bits) 20 30 40 50 60
Number of GEC entries per set 24 16 12 9 8
Number of ECP entries per set 24 32 36 36 40

Table 3: Tradeoff between the number of ECP entries per GEC entry vs.
ECP entries per set. Note that 24 GEC entries can be packed in one GEC
set if each GEC entry contains ECP-1
(Source: Moinuddin K. Qureshi, 2013)

Figure 7 shows the normalized lifetime of PAYG as the number of ECP entries
in GEC is varied from six to one. PAYG is implemented with LEC of ECP-1,
SAT contains 128K sets, and GCT contains 64K sets. As the number of ECP
entries in each GEC entry is reduced, there is a gradual increase in relative
lifetime indicating that the effective utilization of ECP entries outweighs the
relative increase in tag-store overhead.

114

112

110

108

106

104

102

100
6 5 4 3 2 1

Li
fe

tim
e

N
or

m
al

iz
ed

 to
 E

C
P

-6
 (%

)

Number of ECP Entries in Each GEC Entry

Default PAYG

Figure 7: Effect of fine-grained allocation on effectiveness of
PAYG. Note that having ECP-1 in GEC provides the highest
lifetime and is the default PAYG configuration
(Source: Moinuddin K. Qureshi, 2013)

With only ECP-1 in each GEC entry, PAYG obtains a lifetime 13 percent higher
than ECP-6, which is similar to that obtained with uniform ECP-8. Given the

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 179

efficiency of such fine-grained allocation, we assume that PAYG is implemented
with ECP-1 in each GEC entry. The Default PAYG configuration used in our study
is: 128K sets in SAT, 64K sets in GCT, LEC with ECP-1, and FGA with ECP-1
in each GEC entry. This configuration incurs a storage overhead of 3.8 percent of
memory capacity and provides 13 percent more lifetime than uniform ECP-6.

Importance of Local Error Correction
The LEC provides the first line of defense for error correction in PAYG and is
designed to handle the common case of zero or one failure per line. Figure 8 shows
the normalized lifetime with PAYG as the level of ECP in LEC is varied from zero
to six. Note that each ECP in LEC accounts for storage of approximately 2 percent
of overall memory capacity, so having higher levels of ECP in each LEC entry incurs
significant storage overhead. As expected, the lifetime increases with increasing ECP
in LEC. A version of PAYG that has LEC containing ECP-5 has storage similar to
uniform ECP-6 and provides a lifetime improvement of 43 percent. Thus, PAYG
can not only be used to obtain a given amount of lifetime for reduced storage but
can also be used to enhance lifetime at a given storage budget.

For the PAYG configuration without LEC (NoLEC), the given number of GEC
entries are insufficient to handle the error rate, hence it obtains a lifetime lower
than ECP-6. This can be avoided by simply increasing the number of GEC
entries. The right set of bars in Figure 8 shows the lifetime of PAYG without
LEC, when the GEC entries are doubled or quadrupled. We observe that simply
doubling the entries (storage overhead of 2.4 percent) has lifetime equivalent to
ECP-6, and when we double the GEC entries further to overhead of 4.8 percent,
this combination can provide a lifetime significantly higher than with uniform
ECP. However, the key problem of the PAYG configuration without LEC is the
increased access latency. Because the line of defense of LEC is absent, all lines that
have even a single error will experience increased latency because of GEC accesses.

ECP-6

No-
LE

C

L-
ECP-1

L-
ECP-2

L-
ECP-3

L-
ECP-4

L-
ECP-5

L-
ECP-6

G-1
XSets

G-2
XSets

G-4
XSets

150

LI
fe

tim
e

N
or

m
. t

o
E

C
P

-6
 (%

)

Default PAYG

140
130
120
110
100
90
80
70
60
50
40
30
20
10

0

ECP-6 PAYG-VaryLEC-FixGEC PAYG-NoLEC-VaryGECSSets

Figure 8: Lifetime impact of LEC: the middle set of bars vary ECP in
each LEC entry from zero to six. To get lifetime comparable to ECP-6,
we either need at least ECP-1 in LEC, or twice as many sets in GEC
(Source: Moinuddin K. Qureshi, 2013)

“This configuration incurs a storage
overhead of 3.8 percent of memory
capacity and provides 13 percent more
lifetime than uniform ECP-6.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

180 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Storage Overhead of PAYG
The storage overhead of PAYG consists of two parts: LEC and GEC. The
overhead of LEC is incurred on a per-line basis, whereas the overhead of GEC
gets amortized over all the lines. Table 4 computes the storage overhead of
Default PAYG, given that the bank in our baseline contains N = 224 lines. The
LEC incurs 13 bits/line (2-way replicated OFB bits + (1+10) bits for ECP-1).
The storage overhead of PAYG is 3.13x lower than ECP-6. On average, PAYG
needs 19.5 bits/line vs. 61 bits/line for ECP-6.

PAYG

LEC (2 OFB + ECP-1) 13 bits/line

SAT (217) sets 217 lines × 64 B = 8 MB

GCT (216) sets 216 lines × 64 B = 4 MB

Total overhead of LEC 13 bits (224 + 217 + 216) = 26.9 MB

Total overhead of PAYG 26.9 MB + 8 MB + 4 MB = 38.9 MB

Total overhead of ECP-6 61 bits/line × 224 = 122 MB

Ratio of (ECP-6/PAYG) 122 MB/38.9 MB = 3.13x

Table 4: Storage overhead of PAYG (PAYG obtains 13% more
lifetime than ECP-6)
(Source: Moinuddin K. Qureshi, 2013)

Effective Latency with PAYG
Correcting an error with PAYG may require multiple accesses to memory. The
main access simply gets broken down into multiple memory accesses (each of
which takes deterministic time). The structures SAT and GEC are organized
at a granularity of memory line, and we assume that an access to them incurs
similar latency as access to main memory. When a GEC access occurs, the SAT
is indexed and the memory line obtained is searched for a GECP entry with
a matching tag. This incurs one extra memory access. If a match is not found,
then the GCT is accessed, which incurs yet another memory access for each
GCT access. However, this occurs rarely, given that GEC access happens only
when the number of errors in a given line exceeds what can be corrected by
the LEC. Figure 9 shows the percentage of demand accesses that require one
extra access (satisfied by SAT) and two extra accesses (one for SAT and one for
GCT). The probability of one extra access remains 5 percent or less throughout
the expected lifetime under ECP-6 (6.5 years under continuous write traffic).
Only after that does it increase significantly, reaching 17 percent at the end
of lifetime with PAYG. In fact, for the first five years of system lifetime there
is on average only 0.4 percent extra access per memory access, which means
the performance impact is negligible (less than 0.4 percent) during the useful
lifetime. The probability of two extra accesses remains very low throughout
the lifetime.

“The storage overhead of PAYG is
3.13x lower than ECP-6.”

“…for the first five years of system
lifetime there is on average only
0.4 percent extra access per memory
access…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 181

0
0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50

5 years

Num. Writes (Percentage, normalized with respect to lifetime of ECP-6)

P
er

ce
nt

ag
e

of
 A

ll
A

cc
es

se
s

6.5 years

60 70 80 90 100 110

1 Extra Access (SAT Only)

2 Extra Access (SAT 1 GCT-1)

Figure 9: Extra accesses for each demand accesses with PAYG. Note that 100% of
ECP lifetime is 6.5 years. PAYG incurs one extra access for less than 0.4% of memory
accesses during the first five years of machine lifetime. The latency increases to
noticeable range only after 6.5 years. The probability of three or more extra accesses as
it remains negligible (< 0.01%) throughout the lifetime
(Source: Moinuddin K. Qureshi, 2013)

Summary
Emerging memory technologies suffer from the problem of limited write
endurance. Such systems need high levels of error correction to ensure
reasonable lifetime under high variability in device endurance. Uniformly
allocating large amounts of error correction entries to all the lines results
in most of them remaining unused. We can avoid the storage overhead of
such unused entries by allocating the entries in proportion to the number of
faults in the line. Based on this key insight, our article makes the following
contributions:

 ● We propose Pay-As-You-Go (PAYG), an efficient hard-error–resilient
architecture that allocates error correction entries on-demand, as and when
errors occur.

 ● We propose a storage-efficient, low-latency organization for searching
through large number of global error correction (GEC) entries.

 ● We reduce the latency for accessing error correction entries further by
allocating a small amount of Local Error Correction (LEC) per line. Our
analysis shows that one bit of LEC per line is sufficient to balance the
tradeoff between storage overhead and latency impact.

PAYG can be implemented with any hard-error correction technique and is
highly effective compared to line sparing. While we have evaluated the concept
of nonuniform fault tolerance in the context of PCM systems, this concept is
applicable to other memory technologies as well.

Intel® Technology Journal | Volume 17, Issue 1, 2013

182 | A Case for Nonuniform Fault Tolerance in Emerging Memories

References
[1] Int’l Technology Roadmap for Semiconductors (ITRS). http:

//www.itrs.net/Links/2008ITRS/Home2008.htm.

[2] E. Ipek et al. “Dynamically replicated memory: building reliable
systems from nanoscale resistive memories.” ASPLOS-15, 2010.

[3] M. Qureshi et al. “Scalable high performance main memory system
using phase-change memory technology.” In ISCA-36, 2009.

[4] M. K. Qureshi et al. “Enhancing lifetime and security of pcm-based
main memory with start-gap wear leveling.” In MICRO-42, 2009.

[5] S. Schechter et al. “Use ECP, not ECC, for hard failures in resistive
memories.” In ISCA-2010.

[6] N. H. Seong et al. “SAFER: Stuck At Fault Error Recovery for
Memories.” In MICRO-2010.

[7] N. H. Seong et al. “Security refresh: Prevent malicious wear-out
and increase durability for phase-change memory with dynamically
randomized address mapping.” In ISCA-37, 2010.

Author Biography
Moinuddin Qureshi is an Associate Professor in the School of Electrical
and Computer Engineering at Georgia Institute of Technology. His research
interests include computer architecture, scalable memory systems, fault-
tolerant computing, and analytical modeling of computer systems. Prior to
joining Georgia Tech, he was a research staff member at IBM T.J. Watson
Research Center from 2007 to 2011. He was awarded the IBM outstanding
technical achievement award for his studies on emerging memory technologies
for server processors. He received his PhD (2007) and MS (2003), both in
Electrical Engineering, from the University of Texas at Austin, and Bachelor
of Electronics Engineering (2000) degree from University of Mumbai. He is
a recipient of the NetApp Faculty Fellowship (2012) and Intel Early Career
Faculty Award (2012). He can be reached at moin@ece.gatech.edu.

