
DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management

Hritvik Taneja
Georgia Tech

Atlanta, Georgia, USA
htaneja3@gatech.edu

Moin Qureshi
Georgia Tech

Atlanta, Georgia, USA
moin@gatech.edu

Abstract
This paper focuses on Memory-Controller (MC) side Rowhammer
mitigation. MC-side mitigation consists of two parts: First, a tracker
to identify the aggressor rows. Second, a command to let the MC
inform the DRAM chip to perform victim-refresh for the specified
aggressor row. To facilitate this, prior works assumed a per-bank
Nearby Row Refresh (NRR) command. However, JEDEC standards
did not support NRR. Instead, JEDEC introduced Directed Refresh
Management (DRFM), which can simultaneously perform mitiga-
tions for one row each in 8 (DRFMsb) or 32 (DRFMab) banks. As
DRFM stalls 8-32 banks, it incurs high overheads. For example, at a
threshold of 2K, PARA incurs a slowdown of 3.9% with NRR, 12.7%
with DRFMsb, and 49% with DRFMab. Although counter-based
trackers can avoid these slowdowns, they require significant stor-
age. The goal of our paper is to reduce the performance and storage
overheads of MC-based mitigations by using properties of DRFM.

Our paper proposes DREAM, DRFM-Aware Rowhammer Mit-
igation. We propose two variants of DREAM. Our first design,
DREAM-R, reduces the performance overhead of randomized track-
ers by increasing the time between sampling the row and issuing
a DRFM. The delay allows other banks the time to sample their
own rows, thereby increasing the number of rows mitigated under
a single DRFM. DREAM-R reduces the average performance over-
head of PARA from 12.7% (DRFMsb) to 4.24% and MINT from 15.9%
(DRFMsb) to 2.1%. We bound the impact of delayed DRFM on the
tolerated Rowhammer threshold. Our second design DREAM-C,
reduces the storage for counter-based trackers by leveraging the
fact that DRFM can concurrently mitigate several rows. DREAM-C
forms a gang containing 32-256 rows, randomly selected equally
from all the 32 banks, and allocates a single counter for the entire
gang. DREAM-C reduces the storage required at a threshold of 500
to only 1KB/bank, which is 8x lower than Graphene while avoiding
the complexity of CAM lookups and incurring negligible slowdown.
We also show that DREAM compares favorably to PRAC.

CCS Concepts
• Security and privacy→ Security in hardware.

Keywords
DRAM, Rowhammer, Security, DRFM

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731117

ACM Reference Format:
Hritvik Taneja and Moin Qureshi. 2025. DREAM: Enabling Low-Overhead
Rowhammer Mitigation via Directed Refresh Management. In Proceedings
of the 52nd Annual International Symposium on Computer Architecture (ISCA
’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3695053.3731117

1 Introduction
DRAM scaling enables denser chips with higher capacity, but it also
increases the susceptibility of DRAM to data disturbance errors
such as Rowhammer [21]. Rowhammer is a phenomenon where
frequent activations to a DRAM row can result in bit flips in the
neighboring rows. Rowhammer is not just a reliability challenge but
a serious security threat. Rowhammer has been used to compromise
confidentiality [24] and perform privilege escalation attacks [2, 5,
7, 9, 10, 24, 44, 48]. The severity of Rowhammer is characterized by
the Rowhammer Threshold (𝑇𝑅𝐻), which represents the minimum
number of activations required to induce a bit flip. Over the past
decade, this threshold has decreased from 139𝐾 [21] to 4.8𝐾 [18].

A typical hardware-based Rowhammer defense consists of two
parts. First, a tracker that identifies the aggressor rows. Second, re-
freshing the victim rows when the aggressor row is likely to reach
𝑇𝑅𝐻 activations. The tracking can be performed either at the mem-
ory controller (MC) or within the DRAM (in-DRAM). Commercially
deployed in-DRAM defenses (such as TRR) have been broken [7, 13].
Therefore, MC-side mitigation has become a promising alternative
for system vendors to protect their systems from Rowhammer at-
tacks. The focus of our paper is MC-based Rowhammer mitigation.

MC-side Rowhammer mitigations identify the aggressor rows ei-
ther probabilistically or using counters. Probabilistic trackers (such
as PARA [21] and MINT [35], have negligible SRAM overhead but
typically have a higher performance overhead because they require
frequent mitigations. On the other hand, counter-based trackers,
such as Graphene [31], have lower performance overheads, how-
ever, they have a higher SRAM overhead. Once an aggressor row is
identified, the MC cannot directly refresh the victim rows because
the memory chips internally use proprietary mappings, so the MC
would not know the address of the victim rows. Several previous
works [25, 31, 39] in MC-side mitigation have therefore assumed a
hypothetical Nearby-Row-Refresh (NRR) command, which is used
by the MC to inform the DRAM chip to mitigate a specified aggres-
sor row, without requiring the internal physical address mappings.
NRR also has the nice property that when an aggressor row is miti-
gated, only the bank associated with the aggressor row is stalled
(all other banks operate normally). Unfortunately, NRR was not
incorporated into the JEDEC DDR5 specifications. To understand
the efficacy of MC-side mitigations, it is essential to reexamine
them in the presence of commercially available interfaces.

776

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-9870-7703
https://orcid.org/0000-0002-1314-9096
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731117
https://doi.org/10.1145/3695053.3731117
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695053.3731117&domain=pdf&date_stamp=2025-06-20

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

(c) (d)

DRAM
Banks

(a)

Memory
Controller

(b)

Pre+Sample
DAR

DRFMab/sb

With NRR

Banks 0 1 2 3

With DRFM

NRR

Banks 0 1 2 3

DRFM
ACT DRFM

Tracker
Select?

Pre+S

DREAM-R
Banks

0 1 2 3

Tracker

DRAM Banks

0 1 2 3

Tracker

DRFM Unaware: Lots of Counters

DREAM-C: 32-128x Less Counters

Sample
DAR

DAR
Valid

ACT Pre+S

High RLP

Delayed DRFM

Figure 1: (a) Overview of DRFM (b) Comparison of NRR and DRFM, NRR stalls only one bank, whereas DRFM stalls 8-32 banks,
thus incurs high slowdowns (12% or higher) (c) Our design DREAM-R (for randomized trackers) reduces the DRFM overheads
by delaying DRFM and allowing more banks to have rows to mitigate (d) Our design DREAM-C (for counter-based trackers) can
reduce the storage of tracking by keeping one counter for all 32 rows that are mitigated by a single DRFMab command.

To facilitate MC-side mitigations, JEDEC introduced theDirected-
Refresh-Management (DRFM) interface as part of DDR5. It allows
the MC to specify which row to mitigate and then perform the
mitigation by issuing a DRFM command. The specifications contain
two commands: DRFMab and DRFMsb. DRFMab can concurrently per-
form victim refresh for all 32 banks. While DRFMsb can concurrently
refresh victim rows for 8 banks (same bank in each bankgroup).

To facilitate DRFM, each bank contains a DRFM Address Register
(DAR) to store the row-address specified by the MC. The MC can
select which row-address gets stored in the DAR by asserting a
special bit during the precharge operation. When the MC issues
a DRFM command (DRFMab or DRFMsb), the DRAM refreshes the
victim rows of the row from DAR and invalidates the DAR.

In contrast to NRR, which stalls only one bank for mitigating
one row, DRFMsb and DRFMab stall 8 to 32 banks (for 240ns-280ns),
even if we want to mitigate a single row in one bank. Thus, DRFMsb
and DRFMab can cause significantly higher overheads compared to
NRR. A straightforward implementation of DRFM would be to use
it similar to NRR – when an MC-side tracker identifies an aggressor
row, sample it into DAR, and issue a DRFM to mitigate the row in
DAR. Such a design would provide a similar tolerable Rowhammer
threshold with DRFM as with NRR. Unfortunately, such a design
also incurs significantly higher slowdowns than NRR. For example,
we evaluate two randomized trackers: PARA and MINT. At the
threshold of 2K, the average slowdown of PARA (with NRR) is 3.9%,
whereas PARA (with DRFMsb) is 12.7% and PARA (with DRFMab) is
49%. The overheads of MINT are similar to those of PARA. Thus,
using DRFM can incur unacceptably high overheads. The slowdown
of DRFM can be minimized by using a counter-based tracker (such
as Graphene). However, counter-based trackers incur significantly
high storage overheads at lower thresholds.

The goal of our work is to enable MC-side solutions at low
overheads by leveraging the characteristics of DRFM. Specifically,
we want to reduce the slowdown of randomized trackers and the
storage overhead of counter-based trackers. To this end, we pro-
pose DREAM, a DRFM-Aware Rowhammer Mitigation. Our key ob-
servation is that DRFM offers Rowhammer mitigation level paral-
lelism (RLP) – the ability to concurrently mitigate several rows, and
DREAM leverages RLP to reduce performance and storage overhead.

We propose two variants of DREAM: DREAM-R (for randomized
trackers) and DREAM-C (for counter-based trackers).

DREAM-R tries to increase the number of banks that will have
a valid DAR when a DRFM is issued. Doing so allows for more
efficient use of DRFM, as a single DRFM command can potentially
mitigate 8 to 32 aggressor rows, and this increased exploitation of
RLP reduces the rate of DRFM commands. To achieve this, we ob-
serve that there is a time window between when the row is sampled
in the DAR and the latest time when the DRFM can be issued (when
another row is selected by the bank to be sampled in the DAR, while
a valid entry is present in the DAR waiting to be mitigated). How-
ever, the delayed DRFM with DREAM-R impacts the thresholds
tolerated by underlying trackers. We analyze, for both PARA and
MINT, how much the thresholds get revised due to delayed mitiga-
tion and how to redesign the scheme to meet the specified threshold.
For a Rowhammer threshold of 2K, PARA (DREAM-R) incurs 4.24%
overhead, much less than the 12.7% with PARA (DRFMsb). Simi-
larly, MINT (DREAM-R) incurs 2.1%, much lower than the 15.9% of
MINT (DRFMsb). We observe that the overhead of MINT (DREAM-R)
is lower than the 3.9% overhead of MINT (NRR).

The key insight in DREAM-C is that the DRFMab command allows
the MC to concurrently mitigate rows from 32 banks. So, DREAM-C
reduces the storage requirements by tracking all 32 rows (which are
concurrently mitigated) using a single counter. To avoid frequent
mitigations, the rows are selected randomly from each bank (80% of
the rows in memory have 0 activations per refresh period of 32ms).
We further generalize this scheme to have up to 256 rows shared by
a single counter by issuing 8 DRFMs at a time. As DRFM is issued
infrequently, the slowdown is negligibly small.

DREAM-C enables efficient counter-based tracking at low thresh-
olds. For example, at a threshold of 500, DREAM-C requires only
1KB per bank, which is 8x lower storage than Graphene. Fur-
thermore, DREAM-C requires a simple untagged SRAM table and
thus avoids the complexity of large CAM lookups, thereby mak-
ing DREAM-C appealing for practical adoption. We also compare
DREAM-C with a recent design, ABACuS [30], which was aimed
at ultra-low threshold. We show that, even at a threshold of 125,
DREAM-C requires 6.3x lower storage than ABACuS.

777

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

Overall, our work makes the following contributions.

(1) To the best of our knowledge, this is the first paper to analyze
the performance impact of using DRFM (instead of NRR) for
MC-based mitigations. We observe that DRFM causes signif-
icant slowdowns compared to NRR. We propose DREAM, a
DRFM-Aware Rowhammer Mitigation.

(2) We propose DREAM-R to reduce the slowdown of random-
ized trackers by delaying the DRFM and re-architecting the
trackers to meet the revised threshold due to delayed DRFM.
DREAM-R incurs similar or lower overheads than NRR.

(3) We proposeDREAM-C to leverage the Rowhammer-mitigation
Level Parallelism (RLP) of DRFMab to keep a single counter
for a group of 32-256 rows that concurrently get mitigated
using DRFM. DREAM-R reduces the storage overhead of
tracking by 32x-256x and incurs negligible slowdowns.

We also compareDREAMwith Per-RowActivation Counter (PRAC).
PRAC [14] requires high storage overheads and incurs high slow-
downs (on average 9.7%) due to extended memory timings. For
𝑇𝑅𝐻 of 500 and higher, DREAM-R has a lower slowdown than
PRAC while incurring negligible SRAM overheads. At 𝑇𝑅𝐻 of 500,
DREAM-C has about one-fourth the slowdown of PRAC.

2 Background and Motivation
2.1 Threat Model
Our threat model assumes that an attacker can issue any number of
memory requests to arbitrary addresses. The attacker is also aware
of all the details of the Rowhammer defense employed by the system.
The attacker is not aware of the outcome of the random number
generator if it is used in the defense mechanism. An attacker is
considered successful if any row receives more than the threshold
number of activations without the row being refreshed or mitigated.

2.2 DRAM Organization
Organization DRAM is a hierarchical structure that stores data
in two-dimensional arrays. DRAM is organized as channels, sub-
channels, and banks containing rows and columns. Typical DDR5
configuration has a channel containing 2 sub-channels (each with
an independent 32-bit bus), and each sub-channel contains 32 banks.
Operation To access data from a bank, the memory controller
first issues an activation (ACT), which brings the desired row to the
row-buffer. If a different row is already present in the row-buffer,
the memory controller issues a precharge (PRE) command to close
the row and then issues the ACT command. Once the row is in the
row-buffer, the memory controller issues read or write commands
to access the data. The minimum time between two activations to
the same bank is the row cycle time (tRC), 46ns for our baseline.
Refresh DRAM cells store data as charge, which they cannot hold
indefinitely. So, they need to be periodically replenished to prevent
data loss. This is done via the refresh (REF) command. The REF com-
mand is issued every Refresh-Interval (tREFI=3900ns), and it takes
tRFC=410ns to complete. Each REF command refreshes a group of
rows across all the banks. A total of 8192 REF commands refresh all
the rows within a time-period of Refresh-Window (tREFW=32ms).

2.3 Rowhammer
Rowhammer occurs when frequent activations to a row cause the
charge in the nearby rows to leak. If the charge leaked for a cell ex-
ceeds a critical threshold, it can flip. The bit-flips from Rowhammer
can lead to not only data corruption but also security vulnerabili-
ties. Rowhammer has been shown to be able to breach confidential-
ity [24] and breach security via privilege escalation [44].

The severity of Rowhammer is characterized by the Rowhammer-
threshold (𝑇𝑅𝐻), which is the number of activations required to
induce a bit flip.𝑇𝑅𝐻 can be reported for a single-sided pattern or a
double-sided pattern. Over the last decade 𝑇𝑅𝐻 has reduced from
139𝐾[21] (single-sided) to 4.8𝐾 [18] (double-sided). In our paper,
by default, we will use 𝑇𝑅𝐻 to denote the double-side threshold. As
DRAM gets denser, the 𝑇𝑅𝐻 is expected to reduce.

Typical hardware-based Rowhammer defenses [12, 19, 27, 31,
35, 36, 41] consist of two parts: tracking and mitigation. The track-
ing monitors the activation and identifies the aggressor rows. The
mitigation step involves refreshing the neighboring victim rows.
Tracking can be performed within the DRAM or in the memory
controller (MC). Commercially deployed in-DRAM trackers like
TRR [11] have been broken with simple patterns [7]. So, in this
paper, we focus on MC-side mitigation, as it is a viable path for SoC
vendors to protect systems against Rowhammer.

2.4 MC-side Rowhammer Defense
The tracking at the MC-side defense can be done either proba-
bilistically (e.g., MINT [35] or PARA [21]) or using counters (e.g.,
Graphene [31]). Probabilistic trackers typically have negligible
SRAM overhead but incur higher performance overheads as they
need frequent mitigations. Counter-based trackers have a higher
SRAM overhead to track activation counts, however, they have
lower performance overhead as they onlymitigatewhen the counter
reaches a specific threshold. In this work, we study three trackers:
PARA [21], MINT [35], and Graphene [31].
PARA [21]: On an activation, PARA selects the row for mitigation
with probability 𝑝 (see Figure 2). Thus, PARA performs Independent
and Identically Distributed (IID) selection. The selection parame-
ter (𝑝) is based on the target 𝑇𝑅𝐻 and acceptable failure rate. For
example, tolerating double-sided 𝑇𝑅𝐻 of 2000 requires 𝑝 = 1/100.

A B C D

Mitig B

2 ?
Window=W

ACT p

Mitigate

Figure 2: OverviewofRandomizedTrackers: PARAandMINT.
PARA performs IID selection with probability 𝑝. MINT per-
forms URAND selection of one entry fromWindow (𝑊).

MINT [35]:MINT is another recently proposed probabilistic tracker
that performs windowed selection (see Figure 2). MINT operates on
a window size of𝑊 , where𝑊 is the number of activations between
consecutive mitigations. Before starting a new window, MINT per-
forms a Uniform Random (URAND) selection of a number between
1 and𝑊 and mitigates whichever row is activated at that position

778

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

in the window. The properties of MINT are quite different from
PARA. For example, if a row is activated repeatedly throughout the
window, it is guaranteed to get selected. For a double-sided 𝑇𝑅𝐻 of
2000, MINT should be configured with W=100.

The security of MINT relies on the attacker not knowing which
item was selected within the window. MINT was originally devel-
oped for in-DRAM tracking, where the mitigation occurs at the end
of the window (at Refresh). One must be careful in using MINT at
the MC, as the timing channel from mitigation can leak which item
was selected. For example, implementing MINT where, once the
chosen activation slot is reached, a mitigation is issued, would not
be secure, as attackers can use timing to figure out that mitigation
was issued and focus activations on other slots until the end of
the window (as they are guaranteed not to get selected). To ensure
security, we perform sampling (selected row address is buffered at
the MC interim) and mitigation at the end of the window.
Graphene [31]: Graphene is a counter-based tracker that uses the
Misra-Gries algorithm to identify 𝐾 rows that are most frequently
activated, where 𝐾 depends on 𝑇𝑅𝐻 . For example, at 𝑇𝑅𝐻=1000,
Graphene requires a table with 1200 entries, resulting in a storage
overhead of 4.8KB per bank. This storage doubles as the thresh-
old gets halved. We also note that Graphene requires Content-
Addressable Memories (CAM) to support the lookup and large CAMs
incur prohibitive complexity and power overheads.
Mitigation via Nearby-Row-Refresh (NRR): When the trackers
identify an aggressor row, the MC needs to refresh the victim rows.
As DRAM chips internally use proprietary mappings, MC cannot
directly refresh the victim rows. So, priorworks [25, 31, 39] assume a
hypothetical command Nearby-Row-Refresh (NRR) that can inform
the DRAM chip to mitigate a specified aggressor row. NRR can
transparently refresh the victim rows of the specified aggressor
row and stalls only the single bank on which NRR is performed.
Existing MC-side mitigations are evaluated in the context of NRR.

2.5 Directed Refresh Management (DRFM)
The JEDEC standards body did not adopt NRR. Instead, to facil-
itate MC-side mitigation, JEDEC introduced the Directed Refresh
Management (DRFM) command as part of the DDR5 [28] specifi-
cations. DRFM enables the MC to refresh victim rows for a spec-
ified aggressor row without revealing the internal address map-
ping of the DRAM. The DRFM interface introduces two new com-
mands: DRFMsb and DRFMab, which, when issued, concurrently mit-
igate victims of a specified aggressor row in multiple banks. The
DRFMab command mitigates the victims of 32 aggressor rows, and
the DRFMsb command mitigates the victims of 8 aggressor rows
(same bank in eight different bankgroups). The DRFMab command
takes 280ns to complete, and DRFMsb takes 240ns to complete.
Method for Address Sampling in DRFM: To facilitate the DRFM
interface, each bank is equipped with a single register, DRFM Ad-
dress Register (DAR), to store the address of the aggressor row spec-
ified by the MC. When the MC wants to write the address into
the DAR, it can do so by issuing a modified form of precharge by
setting a special command address bit (Pre+Sample), as shown in
Figure 3. The DAR gets invalidated after performing a mitigation

triggered by the DRFM commands. We define two modes of sam-
pling: Implicit-Sampling, which occurs during the natural precharge
of the row, and Explicit-Sampling, where a dummy activation to the
row is performed and then precharge is used for sampling.

DRAM
BanksMemory

Controller

Pre+Sample
DAR

DRFMab/sb

Figure 3: Overview of DRFM. MC stores the row into DAR
and issues DRFM to mitigate the row address stored in DAR.

Operation of DRFMCommand:When the MC issues the DRFMab
or DRFMsb command, the bank reads the address of the row from
the DAR, refreshes the associated victim rows, and invalidates the
DAR.1 Unlike NRR, which performs mitigation of a single row,
DRFM can concurrently perform mitigation across 8-32 banks. We
call this ability of DRFM to concurrently mitigate multiple rows as
Rowhammer-Mitigation Level Parallelism (RLP). As DRFM has an
RLP of 8-32 (8 or 32 rows concurrently mitigated), it also stalls 8-32
banks and can thus cause much higher slowdowns than NRR.

2.6 Implementing MC Mitigation with DRFM
In prior works, when the tracker selects a row for mitigation, an
NRR is issued immediately to mitigate the specific row. Specifically,
the tracker selection process and mitigation process are coupled
with each other. In fact, the usual analysis to determine the tolerated
Rowhammer thresholds for given trackers typically relies on this
property. We can implement MC-side mitigation with DRFM in a
similar manner (i.e., coupled sampling and mitigation) to ensure
that trackers retain their tolerated threshold.
PARA: Figure 4 shows this design for PARA.❶On an ACT, the MC
consults the tracker to decide if the given row is an aggressor row.
If so, after servicing the requested RD operation (or WR operation),
❷ the MC closes the row with a Pre+Sample (Pre+S) command,
which populates the DAR.❸ TheMC then sends a DRFM command
(DRFMsb or DRFMab) to the bank to mitigate the row stored in DAR.
Upon receiving DRFM, the bank mitigates the row and invalidates
the DAR. This design keeps the sampling and mitigation coupled,
ensuring the same tolerated threshold as PARA with NRR.

ACT Tracker

Mitigate?
Pre+S

Fill DAR
RD DRFM

Mitigate
Y

1 2 3

Figure 4: Architecting PARA with DRFM. When the tracker
decides tomitigate a row, it is sampled intoDARon precharge
(Implicit-Sampling), and a DRFM is issued for mitigation.
Note that DAR sampling and mitigation are coupled.
1When the bank encounters a DRFM with an invalid DAR, it can optionally perform
mitigation for a row tracked by the in-DRAM tracker. However, since the address
of the mitigated row is not visible to the MC, the security analysis for the MC-side
mitigation is equivalent to the scenario of not doing mitigation if DAR is invalid.

779

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

0
20
40
60
80

100
120

PA
R
A

Sl
ow

do
w
n(
%
) NRR (Theory) DRFMsb DRFMab

ble
nd
er

bw
av
es

ca
ctu
BS
SN

ca
m4

fot
on
ik3
d

lbm mc
f

om
ne
tp
p

pa
re
st

ro
ms

xa
lan
cb
mk xz ad
d

co
py

sc
ale tri
ad bc bf
s cc pr

ss
sp tc

Gm
ea

n

0
20
40
60
80

100
120

M
IN

T
Sl
ow

do
w
n(
%
)

Figure 5: Performance Impact of PARA (top) and MINT (bottom) with NRR, DRFMsb, and DRFMab at 𝑇𝑅𝐻=2K. Both PARA and
MINT incur an average slowdown of 3.9% with NRR and more than 12.7%, and 49% with DRFMsb and DRFMab. Thus, DRFM incurs
a significant slowdown due to multiple banks stalling. Even with DRFMsb, the slowdown is significant.

MINT: Figure 6 illustrates our baseline design for MINT. ❶ MINT
identifies the selected row-address and stores in into SAR at the
MC. ❷ Before an ACT, we first check if the MINT window has
expired. If the MINT window has expired, i.e., W activations have
occurred since the last mitigation, we perform Explicit-Sampling of
SAR into DAR, by doing a dummy activation to the row stored in
SAR and then using Pre+S command to sample the row into DAR.
❸ We issue DRFM (DRFMab or DRFMsb) for mitigating the DAR. As
MINT does Explicit-Sampling, it has higher overhead than PARA.

ACT MINT

SAR?

ACT
Pre+S

Fill DAR

DRFM

MitigateY

1 2 3

W?

Figure 6: Architecting MINT with DRFM. MINT samples row-
address into SAR. When the window expires, we do Explicit-
Sampling of SAR into DAR and then issue a DRFM for miti-
gation. Note that DAR sampling and mitigation are coupled.

As our designs issue DRFM immediately after DAR sampling,
it is unlikely that the DAR of other banks will have a valid row.
Therefore, with DRFMsb (or DRFMab), although we can mitigate a
row in each of the 8 (or 32) banks, we mitigate only a single row.

2.7 Impact of DRFM on Randomized Tracking
Figure 5 shows the slowdown of PARA and MINT (at 𝑇𝑅𝐻=2000)
when implemented using NRR, DRFMsb, and DRFMab for mitigation.
As expected, as NRR stalls only a single bank, it exhibits the lowest
slowdown for both trackers. For example, both PARA and MINT
incur an average slowdown of only 3.9%. DRFMsb incurs less slow-
down compared to DRFMab because it blocks fewer banks (8 instead

of 32) and for a shorter duration (240 ns compared to 280 ns). For
PARA and MINT, DRFMsb incurs an average slowdown of 12.7% and
15.9%, and with DRFMab, the slowdown increases to 49% and 82%.

2.8 Impact of DRFM on Counter-Based Tracking
The performance overhead of DRFM-based mitigations can be re-
duced (almost eliminated) by using counter-based trackers, such
as Graphene. As they require infrequent mitigations, the latency
of mitigation does not affect system performance. We observe that
NRR, DRFMsb, and DRFMab all incur 0% slowdown for Graphene up
to𝑇𝑅𝐻 of 250. Unfortunately, the storage overhead of counter-based
trackers becomes significantly high, especially at thresholds below
1K. Table 1 shows the per-bank storage overhead of Graphene as
the 𝑇𝑅𝐻 is varied. We also note that Graphene relies on large CAM
lookup, which incurs prohibitive complexity overheads.

Table 1: Storage Overheads of Graphene

Threshold Storage Per-Bank CAM Size
250 15.2 KB (487 KB per sub-channel) 4800 Entries
500 7.9 KB (253 KB per sub-channel) 2400 Entries
1000 4.1 KB (131 KB per sub-channel) 1200 Entries

2.9 Goal of our Paper
Ideally, we want to MC-side mitigations based on randomized-
tracking to use DRFM while incurring slowdowns similar to (or
even less than) NRR. Similarly, at low thresholds, we want to reduce
the storage overheads of MC-side mitigations while using DRFM.
The goal of our paper is to reduce the performance and storage
overheads of MC-side mitigations using the properties of DRFM. To
this end, we propose DREAM (DRFM Aware Rowhammer Mitigation)
that takes advantage of the RLP of DRFM to reduce the overheads.
We propose two variants of DREAM: DREAM-R (randomized track-
ers) and DREAM-C (counter-based trackers). We first present our
experimental methodology before discussing our solutions.

780

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

3 Evaluation Methodology
3.1 Simulation Framework
We use DRAMSim3 [26], a detailed memory system simulator, to
model the DDR5 configuration. Table 2 shows the configuration for
our baseline system. We use the Minimalist Open Page (MOP) [16]
policy as it performs the best for our configuration. We assume that
the time taken by the NRR command is the same as DRFMsb.

Table 2: Baseline System Configuration

Out-of-Order Cores 8 cores at 4GHz, 4-wide
ROB size 256

Last Level Cache (Shared) 8MB, 16-Way, 64B lines, LRU
Memory size 32GB – DDR5

Memory bus speed 3 GHz (6000 MT/s)
Channels 1 (one 32GB DIMM)

Banks x Ranks x Sub-Channels x Rows 32×1×2×128K
tRCD – tPRE – tRC 14ns – 14ns – 46ns
tDRFMsb, tDRFMab 240 ns and 280 ns

Page Closure Open Page Policy
Address Mapping MOP4 [16]

3.2 Workload Characterization
We use 12 benchmarks from SPEC2017 [1] with an MPKI of at least
1, 6 from Graph-Analytics Platform (GAP) [37] and 4 from STREAM.
We use representative sections of the traces. We run the applica-
tions in 8-core rate-mode and continue executing until each core
completes 250 million instructions. We use weighted speedup as a
performance metric. Table 3 shows workload characteristics, includ-
ing the percent of rows with ACT=0, between 1 to 4, and ≥ 5 over
tREFW=32ms and average memory bandwidth (BW) utilization.

Table 3:Workload Characteristics: ACTs/tREFW per row, per-
cent of rows with ACT=0, between 1-4, and >=5 and memory
BW utilization.

Workload MPKI Avg. ACTs/Row % of Rows with ACT Mem. BW
(per tREFW) (=0) (1-4) (≥ 5) Util. (%)

blender 1.54 0.35 97.28 1.88 0.81 19.8
bwaves 41.62 0.83 72.11 24.85 3.02 70.9

cactuBSSN 3.54 0.80 94.47 1.57 3.93 30.3
cam4 3.78 0.46 94.94 2.52 2.53 37.3

fotonik3d 26.71 1 77.04 14.98 7.97 46.3
lbm 27.67 1.06 90.58 4.11 5.30 51.5
mcf 22.34 0.99 84.77 7.81 7.40 71.0

omnetpp 10.09 0.90 84.99 9.86 5.13 43.5
parest 28.88 0.77 97.22 0.13 2.57 81.0
roms 9.82 0.60 88.27 9.29 2.36 53.0

xalancbmk 1.62 0.41 95.64 1.64 2.70 26.4
xz 6.02 0.93 88.33 7.25 4.36 38.1
bc 59 0.66 76.98 20.96 2.06 85.4
bfs 30.87 0.59 76.99 21.64 1.38 80.6
cc 58.55 0.96 69.16 26.66 4.17 78.5
pr 57.71 0.63 76.68 21.68 1.64 87.0
sssp 27.40 0.62 78.34 20.03 1.62 84.8
tc 87.82 0.63 76.66 21.71 1.63 92.5
add 62.50 0.72 60.36 39.08 0.56 94.2
copy 50 0.68 60.99 38.64 0.38 94.9
scale 41.67 0.67 62.12 37.56 0.32 93.3
triad 53.57 0.70 61.44 38.02 0.55 91.8

Average 32.40 0.73 80.24 16.90 2.84 66.0

4 Reduce DRFM Slowdown via DREAM-R
In this section, our aim is to reduce the performance overhead of
DRFM for randomized trackers. As DRFMsb has lower overheads
than DRFMab, it provides a stronger baseline for comparison. There-
fore, in this section, we assume that DRFM is implemented with
DRFMsb. To understand the performance overheads of DRFM, we
analyze Rowhammer-Mitigation Level Parallelism (RLP) of DRFM,
which measures the number of concurrent rows mitigated during a
single DRFM command. We use the observation from this analy-
sis to develop our design DREAM-R, which increases the RLP and
reduces the performance overheads of randomized trackers.

4.1 Observation: The Problem of Low RLP
The DRFMsb command can mitigate one row across each of the 8
banks. Although the available RLP is up to 8, our MC-based PARA
and MINT DRFM designs, which trigger DRFM soon after sampling
the row in DAR (to retain tolerable 𝑇𝑅𝐻), are expected to achieve
low RLP (close to 1). This occurs because when one bank triggers
a DRFM, other banks within the group of 8 banks may not have a
valid DAR and will miss out on mitigation. This causes frequent
DRFM (a separate DRFM from each bank, whenever the bank needs
mitigation) and is the main source of slowdown with DRFM.

Table 5 shows the RLP of PARA and MINT when implemented
with DRFMsb. On average, PARA and MINT achieve an average RLP
of only 1.07 and 1, much lower than the available RLP of 8. Thus,
when a DRFMsb is triggered, 7 out of the 8 banks that are stalled do
not have anything in the DAR to mitigate. Thus, our designs with
DRFM experience 8x higher bank stalls compared to NRR, and yet
achieve no benefits from the 8x RLP available with DRFM.

4.2 Insight: Improve RLP by Delaying DRFM
The performance overheads of DRFM can be reduced by increasing
the exploited RLP, thereby reducing the frequency of DRFM and
lowering the associated stalls. We can achieve this by delaying the
DRFM command, which increases the likelihood that other banks
can have a valid DAR during the interim. Once a row is sampled
into the DAR, DRFM can be delayed until a second row is selected
and needs to be inserted into the DAR (as DAR contains a valid
entry and must be first cleared). With this insight, we propose
DREAM-R. As DREAM-R delays DRFM, it can increase tolerable
𝑇𝑅𝐻 , so tracker designs must be adjusted accordingly.

4.3 DREAM-R: Design and Operation
The delayed DRFM with DREAM-R gives the other banks enough
time to identify their aggressor rows and sample their DAR before
the DRFM command arrives at their banks. As DREAM-R increases
the number of valid DAR at the time when DRFM arrives, it propor-
tionately increases the exploitable RLP and reduces the slowdown.
Figure 7 shows the overview of DREAM-R (PARA).

To enable delayed DRFM, DREAM-R first does a tracker check
(Chk) before doing the activation to determine if the upcoming ACT
will get sampled into the DAR. Based on the Chk, there are three
scenarios: ❶ The DAR is empty, and the tracker decides to sample
the ACT, we perform the activation, and when we need to do row
closure, we use Pre+S to sample the row into DAR (DRFM is not
issued). ❷ The tracker decides not to sample the activation. In this

781

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

case, the subsequent row closure happens with regular precharge.
We note that, if DAR was valid, such activations occur under the
shadow of delayed DRFM (between sampling of DAR and issuance
of the DRFM command). ❸ The tracker decides to sample the
activation, however, the DAR already contains a valid entry. We
first issue a DRFM command (which clears the DAR), then perform
the activation, and at row closure, we use Pre+S to write to DAR.

ACT DRFMChk Pre+S ACT PRE ACT Pre+S

1 2 3Sample Delay DRFM Issue DRFM and Sample

Chk Chk

BankID
DAR Valid? Y

0
Y
1

Y
2

Y
3

Y
4

Y
5

N
6

Y
7

Figure 7: Overview of PARA with DREAM-R. It performs
a Tracker-Check (Chk) before activation, and if ACT will
be sampled and the DAR is full, it issues a DRFM before
servicing the ACT. Here, delayed DRFM increases RLP to 3.2.

The delayed DRFM of DREAM-R allows other banks the time
to write to their own DAR. DREAM-R decouples sampling and
mitigation. For PARA, we always use Implicit-Sampling. The pseudo-
code for DREAM-R (PARA) is shown in Listing 1

X Y
W Activations W Activations

DAR

Implicit
MC-SAR

DRFM ACT
Pre+S

Explicit

DAR

Figure 8: Overview of MINT with DREAM-R, with decou-
pled sampling and DRFM. If DAR is invalid, we do implicit-
sampling into DAR. If DAR is valid, we store the aggressor in
MC-SAR and do explicit sampling at the end of the window.

Figure 8 shows an overview of MINT with DREAM-R (X and Y
are selected in consecutive windows). We decouple sampling and
mitigation. Whenever possible, DREAM-R uses Implicit-Sampling,
as sampling itself does not create a timing channel (DRFM creates
timing channel). In a window, if DAR is already valid, we store the
aggressor row into MC-SAR (MC-side Selected Address Register).
At the end of the window, if MC-SAR is valid, we issue DRFM and
use Explicit-Sampling to store MC-SAR into DAR. The pseudo-code
for DREAM-R (MINT) is shown in Listing 2.

4.4 Impact of DREAM-R on Tolerated 𝑇𝑅𝐻
DREAM-R can cause unmitigated activations to an attack row be-
tween the time when the row is sampled into DAR and when the
DRFM is issued. These activations can increase the tolerated 𝑇𝑅𝐻
of the underlying trackers by an amount equal to the unmitigated
activations. To ensure security, the trackers must be rearchitected
to operate at a revised threshold. We analyze the impact on 𝑇𝑅𝐻 .

MINT: For MINT, upto𝑊 (window size) activations can occur
between sampling and DRFM (see Appendix B). So, 𝑇𝑅𝐻 would
increase by𝑊 /2 (double-sided). For 𝑇𝑅𝐻=2000, we had𝑊 = 100.
We must redesign MINT to operate at 𝑇𝑅𝐻=1950 and use𝑊 = 97.
PARA: For PARA, to ensure security, the total number of activations
between mitigation and sampling and sampling and issuing DRFM
must be less than 𝑇𝑅𝐻 . Our analysis (in Appendix A) shows that to
achieve the same 𝑇𝑅𝐻 with DREAM-R, the probability 𝑝 of PARA
must be revised 17% (so 𝑝 = 1/85 instead of 𝑝 = 1/100 for𝑇𝑅𝐻=2K).

Table 4: Revising trackers with DREAM-R to tolerate𝑇𝑅𝐻=2K
Tracker DRFM DREAM-R DREAM-R (with ATM)
PARA 𝑝 = 1/100 𝑝 = 1/85 𝑝 = 1/99
MINT 𝑊 = 100 𝑊 = 97 𝑊 = 99

Instead of revising parameters (e.g., for PARA, we would need
17% more mitigations) and incurring slowdowns, another way to
handle the unsafe activations between sampling and DRFM is to
actively monitor the activations to the sampled row. We propose
Active Target-Row Monitoring (ATM). With ATM, the MC maintains
a copy of the sampled row in a register. It also maintains a counter
that is incremented every time the sampled row (awaiting DRFM)
receives an activation. If the sampled row receives more than a
threshold (ATM-TH) number of activations, ATM triggers DRFM.
Thus, with ATM, the impact of unmitigated activations due to
DREAM-R is limited to ATM-TH. In our studies, we use an ATM-
TH of 20. Table 4 shows the revised parameters of PARA and MINT
for DREAM-R, with and without ATM.With ATM, we can maintain
parameters similar to DRFMsb.We assume that DREAM-R is always
implemented with ATM. ATM needs only 3 bytes per bank.

4.5 DREAM-R: Performance Results
Figure 9 shows the slowdown for PARA (top) and MINT (bottom)
when implemented with NRR, DRFMsb, and DREAM-R. DREAM-
R significantly reduces the overhead of MC-side mitigations that
use randomized tracking. For PARA, the average slowdown with
DREAM-R (4.24%) is close to that of NRR (3.92%) and is significantly
lower than the 12.7%with DRFMsb. ForMINT, the average slowdown
with DREAM-R (2.1%) is lower than even NRR (3.84%) and much
lower than the 15.9% with DRFMsb.

MINT not only incurs lower overhead than PARA, but it also
has a lower slowdown with DREAM-R than with NRR. This occurs
because NRR blocks banks at different times, increasing the total
duration during which at least one bank is blocked. Since requests
from a core can be distributed across all banks, a core can stall if
even one bank is blocked. With DRFMsb, the blockage of 8 banks
occurs concurrently. However, with NRR, they occur in a staggered
manner. The extended blocking time with NRR leads to a higher
overall stall time. We analyze MINT in more detail in Section 4.7.
Impact on RLP: The reduced slowdown with DREAM-R primarily
occurs as DREAM-R increases the RLP by allowing other banks the
time to sample their rows in DAR. Table 5 shows the average RLP of
PARA and MINT with DRFMsb and DREAM-R for all the workloads
in Table 3. For PARA, DREAM-R improves the RLP from 1.07 to
3.2. For MINT, DREAM-R increases RLP from 1 to 7.5 (very close
to the maximum available RLP of 8), which means the time under

782

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

0
5

10
15
20
25
30

PA
R
A

Sl
ow

do
w
n(
%
)

NRR (Theory) DRFMsb DREAM-R
ble
nd
er

bw
av
es

ca
ctu
BS
SN

ca
m4

fot
on
ik3
d

lbm mc
f

om
ne
tp
p

pa
re
st

ro
ms

xa
lan
cb
mk xz ad
d

co
py

sc
ale tri
ad bc bf
s cc pr

ss
sp tc

Gm
ea

n

0
5

10
15
20
25
30

M
IN

T
Sl
ow

do
w
n(
%
)

Figure 9: Performance impact of NRR, DRFMsb, and DREAM-R on PARA (top) and MINT (bottom) at 𝑇𝑅𝐻=2K. On average, for
PARA, DREAM-R achieves a slowdown (4.24%), which is close to NRR (3.92%) and much lower than DRFMsb (12.7%). On average,
for MINT, DREAM-R achieves a lower slowdown (2.1%) than both NRR (3.84%) and DRFMsb (15.9%).

DRFM command is spent doing mitigation across all the stalled
banks. This increase in the efficiency of DRFM means less frequent
DRFM and reduced slowdowns.

Table 5: RLP for PARA and MINT for DRFMsb and DREAM-R.
The delayed DRFM in DREAM-R improves RLP.

Design Average RLP
PARA (DRFMsb) 1.07
MINT (DRFMsb) 1
PARA (DREAM-R) 3.23
MINT (DREAM-R) 7.55

4.6 Sensitivity to Rowhammer Threshold
Figure 10 shows the performance of PARA andMINT usingDREAM-
R and DRFMsbwhen𝑇𝑅𝐻 is varied. The average slowdown for PARA
with DREAM-R is 16.75%, 8.4%, 4.24%, and 2.14% for 𝑇𝑅𝐻=0.5K,
1K, 2K, 4K, respectively. The average slowdown for MINT with
DREAM-R is 8.4%, 4.23%, 2.1%, and 1.06% for 𝑇𝑅𝐻=0.5K, 1K, 2K, 4K,
respectively. Thus, even at future low thresholds of 500, MINT with
DREAM-R is a practical and secure option to tolerate Rowhammer.

TRH=500 TRH=1000 TRH=2000 TRH=4000
0

10

20

30

40

Sl
ow

do
w
n(
%
)

61.4%
PARA
MINT

PARA (DREAM-R)
MINT (DREAM-R)

Figure 10: Slowdown of PARA and MINT at varying 𝑇𝑅𝐻 .
Average slowdown of PARA andMINTwith DREAM-R varies
from 16.75% to 2.14%, and from 8.4% to 1.06%.

4.7 Not All Randomized Trackers are Equal
We observe that MINT has higher RLP and lower slowdown than
PARA, even though both are randomized trackers with the same
selection probability. When a bank has two quick selections (for
sampling into DAR), then DREAM-R is forced to send a DRFM
command for the second selection. As PARA performs IID selection,
the distance between consecutive selections is exponentially dis-
tributed (lots of smaller distances and few large ones). MINT does
URAND selection, so the inter-selection distance follows a triangu-
lar distribution (most values are around𝑊 , with a range between 0
to 2𝑊). Thus, MINT has well-spaced selections. Figure 11 shows
the Monte-Carlo selection for four banks for PARA (𝑝 = 1/100)
and MINT (𝑊 = 100) for 1000 activations to each bank. PARA has
lots of shorter periods of re-selections for a bank, which requires
triggering DRFM, and hence, PARA has reduced RLP and higher
slowdowns. The selections of MINT(raw) are more evenly spread
out. Furthermore, MINT does the sampling into DAR at the end
of the window, therefore, MINT provides more time for delaying
DRFM, hence it obtains higher RLP and lower slowdown.

0
1
2
3

B
an

ks

PARA MINT (Raw) MINT (DAR Sampling)

0
1
2
3

B
an

ks

0 200 400 600 800 1000
Activation Number

0
1
2
3

B
an

ks

Figure 11: The inter-selection distance of MINT and PARA
for 1000 activations to four banks. MINT has well spaced-out
selections than PARA, allowing more delay for DRFM.

783

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

5 DREAM-C: Reducing SRAM Overhead
In this section, we aim to leverage the RLP of DRFM to significantly
reduce the SRAM overheads of counter-based trackers. We propose
a new counter-based tracker, DREAM-C, which reduces the SRAM
overhead of tracking to 1KB/bank (for 𝑇𝑅𝐻=500), which is 7.9x
lower than Graphene (and avoids CAM lookups). Even at 𝑇𝑅𝐻=125,
our proposal has 6x lower SRAM overhead than the state-of-the-art
ABACuS [30] design. We start by explaining our key insights.

5.1 Insight-1: Exploit RLP via Group-Tracking
Counter-based trackers incur high SRAM overhead as they require
a dedicated counter for each tracked row in DRAM. Our first insight
is that, as DRFMab can concurrently mitigate 32 rows, we can track
the activations of the entire gang of 32 rows using a single counter
and mitigate them together using a single DRFMab command. This
approach reduces the number of counters by 32x, thereby decreas-
ing the SRAM overhead by 32x. However, this also means that
each entry in the tracker is incremented 32 times faster, leading
to more frequent DRFMab commands, which could introduce sig-
nificant performance overheads. To address this issue, we explore
different grouping schemes that dictate which rows from different
banks form a gang to contribute to the same aggregated counter.

Banks

0 1 ... 31

Tracker

DRFM-Unaware: More Counters DRFM-Aware: 32x Less Counters
Banks

0 1 ... 31

Tracker

If CTR>T
Issue DRFMab

Figure 12: (a) Conventional designs use a per-bank tracker
with counter per tracked-row (b) Exploiting RLP of DRFMab
can enable shared tracking, and reduce SRAM by up-to 32x.

5.2 Insight-2: Use Randomized-Grouping
A straightforward approach to group tracking is to aggregate the
activations from the same RowID from all the banks. We call this
Set-Associative Grouping (as shown in Figure 13 (a)). However, this
design leads to hot entries in the tracker because most DRAM
address-mapping functions, including MOP [16], map a 4KB OS
page to the same RowID across different banks. As a result, for hot
pages, the same RowID across different banks will get activated
frequently, leading to hot counters for such RowID.

Banks

0 1 ... 31

Tracker Banks

0 1 ... 31

Tracker

Hot
Counters

Cold
Counters

(b) Randomized Grouping(a) Set-Associative Grouping

Figure 13: For grouped-tracking: (a) Set-associative group
leads to some high-value counters (b) Randomized-grouping
leads to more uniform lower-value counters.

We observe that most rows in the memory are activated infre-
quently. Per the characterization data in Table 3, 80% of the rows
across all banks receive 0 activations (within tREFW=32ms), and
97% of the rows receive at most 4 activations per tREFW. On average,
each row receives fewer than 1 activation during tREFW. Therefore,
if the rows contributing to a shared counter are selected randomly
from 32 banks, then the expected count for each shared entry will
be less than 32 and, in most cases, below 128 (since 97% of rows
encounter ≤ 4 activations). Based on this observation, we propose
a Randomized-Grouping design that breaks the spatial correlation
of the grouped rows by selecting random RowIDs from different
banks and thus reducing hot counters, as shown in Figure 13 (b).

5.3 DREAM-C: Overview and Design
To efficiently reduce the storage overhead of tracking, we propose
DREAM-C: a MC-side counter-based tracker that leverages the RLP
of DRFM to reduce the number of counters. It tracks a gang of rows
from different banks using a shared counter, as shown in Figure 14.
We refer to the table of shared counters as the DREAM-Counter-
Table (DCT). The grouping function of DREAM-C can be either set-
associative or randomized. At every ACT, the counter value of the
associated DCT-entry is compared to the Tracker Threshold (𝑇𝑇𝐻),
which is set to𝑇𝑅𝐻 /2, to securely handle the table reset [31]. Before
issuing a DRFMab, DREAM-C issues 32 ACT and Pre+S commands
to populate the DAR of each bank.

DREAM
Counter

Table
(DCT)

ACT Grouping
Function If CTR>T Issue 32

ACT and Pre+S

Random

Set-Assoc

DRFMab

BankID
DAR Valid?

0 1 ... 31
Y Y ... Y

Figure 14: Overview of DREAM-C: It groups 32 rows to one
counter in DCT, and mitigates all 32 rows using DRFMab.

5.4 Structures and Operation
DREAM-Counter-Table (DCT): The purpose of DCT is to track
activations for all the rows across all the banks in sub-channel. It
is organized as an untagged table of counters, with each counter
sized to count up to 𝑇𝑇𝐻 . By default, the number of entries in DCT
is equal to the number of rows in a single bank.
Grouping Function: The tracker uses the grouping function to
index the DCT.We analyze DREAM-Cwith two grouping functions:
(a) Set-Associative and (b) Randomized. The set-associative group-
ing uses the RowID of the incoming ACT to index the DCT. The
randomized grouping function uses the result of an XOR operation
between the RowID of the incoming ACT and a random-mask as
the index for DCT. DREAM-C uses a different random mask for
each bank (initialized at boot time). DREAM-C requires 32 random
masks per sub-channel (a total of 68 bytes SRAM per sub-channel).
Operation: The RowID of an incoming activation is used to index
the DCT, and depending on the DCT counter, the MC can perform
one of these two actions.❶ The counter value is less than𝑇𝑇𝐻 , then
MC issues the ACT command and increments the counter. ❷ The
counter value is equal to 𝑇𝑇𝐻 , then MC issues 32 ACT and Pre+S

784

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

0

10

20

30

40

50

D
R

E
AM

-C
Sl

ow
do

w
n

(%
)

75.6% 70.0%

Set-Assoc-Grouping (TRH=500)
Random-Grouping (TRH=500)

ble
nd

er
bw

av
es

ca
ctu

BSS
N

ca
m4

fot
on

ik3
d

lbm mcf
om

ne
tp

p
pa

re
st

ro
ms

xa
lan

cb
mk xz ad

d
co

py
sc

ale tri
ad bc bf
s cc pr

ss
sp tc

Gm
ea

n

0

5

10

15

20

25

D
R

E
AM

-C
Sl

ow
do

w
n

(%
) TRH=250

TRH=500
TRH=1000

Figure 15: Performance impact of set-associative and randomized grouping at 𝑇𝑅𝐻=500 (top) and sensitivity of DREAM-C to
𝑇𝑅𝐻 with randomized grouping (bottom). On average, set-associative grouping incurs much higher slowdown (14.4%) than
randomized grouping (2.6%). The average slowdown experienced by DREAM-C is 5.1%, 2.6%, 0.8% at 𝑇𝑅𝐻 of 250, 500, and 1000.

commands to populate the DAR, followed by a DRFMab command.
Once DRFM finishes, MC issues the ACT and sets the counter to 1.
DCTReset: Each entry in the DCTmust be reset once every refresh
window (tREFW=32 ms). If the entire DCT is reset at the end of
each 32 ms window, most counters in the DCT would be zero
at the beginning and reach their highest values toward the end,
resulting in an increased number of DRFM commands near the end
of the refresh window. To evenly distribute the slowdown caused
by DRFM, we reset 16 DCT entries (out of 128K) at each REF.

5.5 Vertical Sharing: Further Reducing Storage
Given that 97% of the rows receive less than 4 activations, a gang
of 32 rows is unlikely to reach a tracker threshold of 250 for benign
workloads. Therefore, for higher 𝑇𝑅𝐻 , an even larger gang size
can further reduce the storage overhead of tracking. Based on this
observation, we propose Vertical-Sharing, where instead of having
just one row from each bank share the DCT-counter, multiple rows
from each bank share the same DCT-counter. This proportionately
reduces the SRAM overhead of the DCT. To mitigate the increased
number of rows in the gang, when the DCT-counter reaches 𝑇𝑇𝐻 ,
the MC issues multiple back-to-back DRFMab commands and then
resets the counter to 1. The number of random masks required
per sub-channel also increases proportionally (with the caveat that
multiple masks of a given bank must not be equal to each other).

Banks

0 1 ... 31

DCT

Issue
2xDRFMab

Figure 16: Overview of Vertical Sharing. It reduces the SRAM
for DREAM-C and relies on multiple DRFM for mitigation.

Configurations: Table 6 shows the configurations for DREAM-
C for 𝑇𝑅𝐻 of 125 to 1K. We note that DREAM-C can tolerate a

𝑇𝑅𝐻=500 at a storage overhead of just 1 KB/bank, which is 8x lower
than what Graphene needs (7.9 KB/bank) to tolerate the same 𝑇𝑅𝐻 .
DREAM-C also avoids the CAM complexity of Graphene.

Table 6: Configurations for DREAM-C
𝑇𝑅𝐻 Gang Num. DRFMab DREAM-C Graphene

Size for Mitigation (SRAM/Bank) (CAM/Bank)
125 32 1 3 KB 29.3 KB
250 64 2 1.75 KB 15.2 KB
500 128 4 1 KB 7.9 KB
1000 256 8 0.56 KB 4.1 KB

DoS Analysis: DRFMab command blocks an entire sub-channel for
280 ns. An attacker could use DREAM-C to conduct a Denial-of-
Service (DoS) attack. Each round of DREAM-C mitigation blocks
the sub-channel for 411 ns, including the time taken by the ACT
and Pre+S commands. With DREAM-C of𝑇𝑅𝐻=125, an attacker can
issue 62 activations to the gang of rows by continuously accessing
them, triggering DRFM. The total time required for one round of
activations to trigger a mitigation would be tRC+62×tBUS=213
ns. Thus, with DREAM-C, even the worst-case pattern can reduce
system throughput by at most 3x, which is similar to other memory
contention attacks, such as row buffer conflicts [29, 32], and prior
works on Rowhammer mitigation [4, 30, 36, 51].

5.6 Results: Impact of Grouping Function
Figure 15 (top) shows the impact of set-associative and randomized
grouping on the performance of DREAM-C at𝑇𝑅𝐻=500. DREAM-C
with set-associative grouping experiences a slowdown of 14.4%
compared to an unprotected baseline, while DREAM-C with ran-
domized grouping only experiences a slowdown of 2.6%. This shows
that grouping a random set of rows effectively eliminates the ma-
jority of hot counters. Furthermore, workloads such as lbm and
parest experience over 70% slowdown with set-associative group-
ing, whereas the slowdown is only 10% with randomized grouping.

785

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

5.7 Results: Sensitivity to Threshold
Figure 15 (bottom) shows the slowdown of DREAM-C with ran-
domized grouping for 𝑇𝑅𝐻 of 250, 500, and 1000. At 𝑇𝑅𝐻=250, the
average slowdown is 5.1%, with the worst-case slowdown expe-
rienced by lbm at 24.7%. At 𝑇𝑅𝐻=500, the average slowdown is
2.6%, with the worst-case slowdown of 13% for parest. Finally,
at 𝑇𝑅𝐻=1000, the average slowdown is 0.8%, with the worst-case
slowdown of 4.5% for parest. For all three thresholds, the stream
workloads experience almost no slowdown. We also evaluate the
sensitivity of DREAM-C to the memory intensity in Appendix C.

5.8 Comparison with ABACuS
ABACuS [30] is a recently proposed counter-based tracker that
utilizes a shared activation counter for the same RowID across
different banks. It keeps an entry for each row in the bank.2 This is
equivalent to our set-associative design. The key insight in ABACuS
is that a page striped across banks may have rows that get activated
at similar times, so avoid the counter-update for such sibling rows.
Each entry in the ABACuS table contains, in addition to a counter,
a Sibling Activation Vector (SAV), which is a bit vector of length
equal to the number of banks. If a streaming workload accesses the
same row in all the banks one after another, then ABACuS will use
the SAV to count this as 1 activation instead of 32 (on activation, if
the SAV bit for the row is zero, the counter increment is skipped,
and SAV bit is flipped to one). However, SAV-based filtering incurs
high overheads. For example, at 𝑇𝑅𝐻=125, each table-entry needs a
6-bit counter and a 32-bit SAV (5.33x additional SRAM storage).

Slowdown Storage
0
2
4
6
8

10

Sl
ow

do
w

n(
%

)

6.7% 8.2%
4.7%

ABACuS DREAM-C DREAM-C (2x)

0

5

10

15

20

SR
AM

 /
ba

nk
 (K

B
)

19

3
6

Figure 17: Slowdown of ABACUS, DREAM-C, DREAM-C (2x
storage) at 𝑇𝑅𝐻=125. DREAM-C (2x storage) has less storage
overhead and performance overhead than ABACUS.

Figure 17 shows the slowdown and storage requirements for
ABACUS, DREAM-C, and DREAM-C with 2x storage at 𝑇𝑅𝐻=125.
We see that the slowdown of ABACuS (6.7%) is slightly lower than
DREAM-C (8.2%), however, it requires 6.33x more storage than
DREAM-C (19 KB/bank versus 3KB/bank). DREAM-C, configured
with 2x storage, outperforms ABACuS while still incurring 3.16x
lower storage. Thus, the randomized grouping used by DREAM-C is
a more effective and storage-efficient way of reducing hot counters
as compared to SAV-based filtering of ABACuS. Also, ABACuS
continues to use 128K counters even at higher thresholds (e.g. 500),
so the storage overhead of ABACuS remains high even at higher
𝑇𝑅𝐻 . Whereas DREAM-C proposed vertical-sharing to significantly
reduce the storage requirements at higher thresholds (250 to 1K).
2ABACuS also proposed a Graphene-based design. However, sharing Graphene across
16-32 banks means that the spill counter can quickly exceed the maximum safe value
(600K activations). To ensure security, when this occurs, we need to refresh the entire
memory (4ms) or do DRFM before servicing each requests (7x slowdown). Such high
latency/slowdown is not acceptable. Therefore, we only consider ABACuS-Big.

6 Impact of DRFM Rate-Limits on DREAM
Transitive Attacks [22, 47] leverage victim refresh to cause bit-flips
in distant rows. For example, if an aggressor row is activated repeat-
edly, it will cause a significant number of victim refreshes, which
can be sufficient to induce bit flips in the neighbors of victim rows.
This problem is particularly acute for MC-based mitigations, as they
are not privy to the location of victim rows. JEDEC specifications
for DRFM are aware of this vulnerability and the Bounded Refresh
mode performs refresh not only of the immediate neighbor, and
but also of the distant neighbor with a reduced (unspecified) proba-
bility. Furthermore, to limit transitive attacks, DRFM specifications
dictate that a row can receive mitigation at most once per 2*tREFI
(thus allowing at-most 4K DRFM per row within a refresh window
of 32ms). In this section, we discuss how such DRFM rate limits
can be handled in a practical manner and how this rate-limit would
impact the tolerated threshold.

6.1 Handling DRFM Rate-Limits for DREAM-R
For DREAM-R, we consider a MINT-based implementation. Let
there be up-to 75 activations per tREFI, so up-to 150 activations in
2*tREFI. If MINT had a window of “W” activations, then a row can
be selected for mitigation at most 150/W times. For example, for
MINT window of 50, we can have only 3 mitigations for a given
row within 2*tREFI, and we want to limit this to 1. To adhere to the
rate-limit, each bank keeps track of last three recently mitigated
addresses in a Recent-Mitigated-Address-Queue (RMAQ).

ACT

Want to
Sample

RMAQ

MINT
RMAQ

Hit?
Sample to DAR
Insert in RMAQ

No

Yes
Skip Sampling

Figure 18: Handling rate-limits with DREAM-R. Each bank
has a FIFO (RMAQ) to track past 2-6 recently sampled ad-
dresses. If selected row hits in RMAQ, the row is not sampled.

Figure 18 shows the overview of how to implement DREAM-R
with the DRFM rate limits. RMAQ is a FIFO, where new entries
come from one end and leave from another. Each RMAQ entry also
has a tREFI identifier (2-bits). When DREAM-R selects a row for
mitigation, it first checks the RMAQ if the selected row has been
mitigated recently (within the last two tREFI). If so, it skips the
mitigation for the given address. Otherwise, DREAM-R proceeds
regularly with sampling and mitigation. At each tREFI, all RMAQ
entries older than two tREFI are invalidated.

For a 𝑇𝑅𝐻 of 500/1K/2K we use a MINT window of 25/50/100.
Therefore, to tolerate the DRFM rate limits, we would need a RMAQ
containing 2, 3, or 6 entries, respectively. Each RMAQ entry requires
valid bit (1), row-address (17-bit) and tREFI-ID (2 bit), for a total of
20 bits. Thus, the total cost of RMAQ is 5-15 bytes SRAM per bank.3

3Handling rate-limits for a PARA-based implementation of DREAM-R would incur
more storage overhead as tens of rows can get sampled within two tREFI. Thus, MINT-
based DREAM-R is not only has lower slowdowns, it also has reduced storage overhead
and complexity compared to PARA-based implementation of DREAM-R.

786

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

6.2 Impact on Threshold of DREAM-R
As RMAQ-based DREAM can skip some mitigations, an attacker
can use this to cause more activations than a design without rate
limits. For MINT, the most stressful pattern is W unique rows (e.g
ABCD) in a window, and this circular pattern repeats (ABCD)𝑁 .
With RMAQ, an attacker can activate Row-A “W” times, so MINT is
guaranteed to select it for mitigation. Then, activate Row-A another
150 times, and RMAQ will ensure that there is no sampling for Row-
A. So, we have inflicted 150 extra activations on Row-A without
selection. And then it can continue with the circular attack pattern.
Naively this increases 𝑇𝑅𝐻𝑆 (single-sided) by 150, so 𝑇𝑅𝐻 by 75.

In the circular pattern, there are W lines that can cause failure.
But for our pattern,𝑇𝑅𝐻 will be affected only if Row-A causes failure
(which has only 1/W chance of occurring). We modify the MINT
security model to take this into account and observe that the RMAQ-
based filering increases the tolerated 𝑇𝑅𝐻 only at lower window
sizes (below 40). Table 7 shows the 𝑇𝑅𝐻 tolerated by DREAM-R
(MINT) with and without rate limits as the window size varies. For
thresholds of 1K/2K, RMAQ does not affect the tolerated 𝑇𝑅𝐻 . For
𝑇𝑅𝐻 of 500, RMAQ increases it to 536 (minor impact).
Table 7: 𝑇𝑅𝐻 of DREAM-R (with/without DRFM rate-limit)

MINT-W 25 30 35 40 45 50 100
𝑇𝑅𝐻 DREAM-R 0.5K 0.6K 0.7K 0.8K 0.9K 1K 2K
+ with RMAQ +36 +25 +14 +2 0 0 0

6.3 Handling DRFM Limits for DREAM-C
For DREAM-C, multiple rows form a group and share a single
counter. DRFMab is triggered when the counter reaches a limit
(e.g. 62 for 𝑇𝑅𝐻 of 125). After DRFMab, there must be another 62
activations to the group before a DRFMab is needed again for the
group. Typical workloads do not access rows in such a focused
manner to cause tens of activations on a small group of rows within
two tREFI, so the DRFM rate limit is not a problem for benign
workloads. However, this limit can be reached with a pathological
workload that focuses activations on rows that map to the same
group (as the xor-mask for each bank is randomly generated, the
likelihood of finding four rows in a group is less than 1 in a trillion).

We note that with explicit sampling and mitigation, we can
issue a total of at most 9 DRFMab per sub-channel per tREFI, so 18
per 2*tREFI. For DREAM-C, we keep an 18-entry RMAQ per sub-
channel (tracking GroupID instead of RowID) and skip mitigation
if the group to be mitigated is present in the RMAQ. This would
increase the tolerated 𝑇𝑅𝐻 by at most 75. Alternatively, the MC
could delay issuing the ACTs for the group until two tREFIs have
passed (if the group recently received DRFM and needs another
DRFMwithin two tREFIs). As such patterns are improbable to occur
in benign workloads, this solution would avoid slowdown without
impacting the tolerated 𝑇𝑅𝐻 .

6.4 Eliminating Rate-Limit of DRFM
The rate-limit of DRFM occurs because Bounded-Refresh probabilis-
tically refreshes only one distant neighbor on each side. A recent
method, Fractal Mitigation [33], refreshes larger distance rows (each
with decreasing probability). If DRFM is implemented with Fractal-
Mitigation instead of Bounded-Refresh, it would obviate the need
for DRFM rate limits (and without impact on the latency of DRFM).

7 Related Work
7.1 Comparison with MOAT and Panopticon
JEDEC recently introduced Per-RowActivation Counting (PRAC) [14],
a framework to build Rowhammer mitigations in a principled man-
ner. A PRAC-enabled DIMM stores the activation counters for the
rows within the DRAM. These activation counters are incremented
during precharge before a row is closed. Storing these activation
counters not only incurs high area overheads [20] but also requires
changes to the DRAM timings to perform the read-modify-write
of the PRAC counters. Specifically, PRAC increases the key timing
parameters (tRC and tRP).

PRAC introduces two sources of slowdown: intrinsic and extrinsic.
The intrinsic slowdown is caused by the increased timing parameters.
Notably, tRP (precharge time) has increased from 14ns to 36ns,
significantly increasing the time required to serve demand requests
from a conflicting row, thereby degrading system performance. The
extrinsic slowdown is incurred when an Alert-Back-Off (ABO) is
invoked to perform mitigation for an aggressor row (ABO stalls
the memory controller). The magnitude of extrinsic slowdown
is dependent on the design choices of PRAC and 𝑇𝑅𝐻 . However,
the intrinsic slowdown is independent of the design choices and
remains similar across all𝑇𝑅𝐻 . MOAT [34] is a recent secure defense
using PRAC. We implement PRAC using MOAT.

Figure 19 shows the slowdown incurred by PRAC,MINT (DREAM-
R), and DREAM-C, as the𝑇𝑅𝐻 varies from 500 to 4000. MOAT incurs
a 9.7% slowdown across all evaluated 𝑇𝑅𝐻 values. This slowdown
is attributed solely to the intrinsic overhead imposed by PRAC,
as the extrinsic slowdown remains negligible for MOAT, as most
benign workloads do not contain aggressor rows that would trig-
ger mitigations. For 𝑇𝑅𝐻 ≥ 1K, MINT (DREAM-R) incurs a signifi-
cantly lower slowdown compared to PRAC-based defenses. At 𝑇𝑅𝐻
= 500, DREAM-C incurs only 0.25x of the slowdown observed in
PRAC-based schemes. Meanwhile, MINT (DREAM-R) experiences
a slowdown of 8.4%, which is lower than the 9.7% slowdown of
PRAC-based approaches while requiring negligible storage.

TRH=500 TRH=1000 TRH=2000 TRH=4000
0

5

10

Sl
ow

do
w
n(
%
)

9.7%8.4%

2.6%

4.2%

0.8%
2.1%

0.0%
1.1%

0.0%

PRAC MINT (DREAM-R) DREAM-C

Figure 19: Slowdown of PRAC, MINT (DREAM-R), and
DREAM-C. At𝑇𝑅𝐻 ≥ 500, DREAM-R outperforms PRAC, and
DREAM-C has 0.25x the slowdown of PRAC.

7.2 Efficient or Exhaustive Tracking
Several studies have proposed efficient designs to identify aggressor
rows. PRA [17], PARA [21], MRLOC [52], and ProHIT [46] are prob-
abilistic approaches, while CRA [17], CBT [45], TWiCe [25], and
Graphene [31] count activations to specific rows. Prior works have

787

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

also proposed exhaustive trackers. CRA [17] and Hydra [36] store
counters in DRAM and use filters or caches to reduce the counter
lookups. START [41] uses LLC to dynamically store counters.

7.3 Mitigative Actions
We assume that mitigation is performed by victim refresh. Prior
work has also looked at alternative mitigation techniques. For exam-
ple, Blockhammer [51] limits the rate of activations to an aggressor
row. Next, row-migration techniques, such as RRS [38], AQUA [43],
SRS [8], and SHADOW [50], perform mitigation by moving an
aggressor row to another location in memory. These designs incur
high overheads. Rubix [40] performs memory address randomiza-
tion to reduce the overheads of SRS, AQUA, and Blockhammer.

7.4 Error Correction
Another approach to tolerate bit-flips from Rowhammer is to em-
ploy error-detection and error-correction. SafeGuard [6], CSI-RH [15],
and PT-Guard [42] use codes to detect Rowhammer failures. How-
ever, with such solutions, uncorrectable failures can still occur
leading to data loss.

7.5 Software-Based Defenses
Although software-based defenses [2, 3, 23, 49] can prevent Rowham-
mer, they often require knowledge of DRAM properties that may
be proprietary or not easily available to software. GuardION [49]
inserts a guard row between data of different security domains.
ZebRAM [23] and RIP-RH [3] provide isolation by keeping the ker-
nel space and user space(s) in different parts of DRAM. However,
accesses to Page Tables [53] can still flip bits in kernel space.

8 Discussion: Why MC-Side Mitigations?
There are three key reasons for MC-Side Rowhammer mitigations:

(1) The in-DRAM defenses implemented by the DRAM vendors are
not public, so SoC vendors cannot know if the in-DRAM solu-
tion is implemented correctly and is indeed secure (recall TR-
Respass). Rather than trusting proprietary solutions of DRAM
vendors, DRFM allows the SoC vendors to get assured security
against RH by implementing low-cost mitigations themselves.

(2) The in-DRAM solution that the DRAM industry is currently
considering (PRAC) incurs significant performance overheads
(10% on average). DRFM allows SoC vendors to protect against
RH without the unacceptably high slowdowns of PRAC.

(3) MINT steals time from REF operations (240ns out of 410ns) for
performing RH mitigation. As DRAM reliability degrades, it
is unclear if DRAM vendors can dedicate a significant portion
of REF time for in-DRAM RH mitigation (typically, in-DRAM
mitigations perform one aggressor-row mitigation every 4 to
8 REF, in which case, the TRHD tolerated by MINT will be
approximately 6K to 12K, much higher than our solutions). Our
solution avoids reliance of RH mitigation on cannibalizing REF.

Our work shows how to implement MC-side mitigations in a
principled and low-overhead manner.

9 Conclusion
This is the first paper to thoroughly analyze the overhead of imple-
menting MC-side Rowhammer mitigations using DRFM. DRFM can
concurrently mitigate a row in 8-32 banks. Using DRFM in an NRR-
like manner incurs significant performance overhead (12%-80%).
This paper proposes DREAM (DRFM-Aware Rowhammer Mitigation),
which exploits the Rowhammer-Mitigation Level Parallelism (RLP)
of DRFM to reduce overheads. DREAM-R reduces the slowdown for
randomized trackers by delaying DRFM and allowing other banks
to sample their rows and increase RLP. DREAM-R reduces the av-
erage slowdown of MINT from 15.9% (with DRFMsb) to 2.1% for a
𝑇𝑅𝐻 of 2000. DREAM-C uses RLP to reduce the storage overhead
of counter-based trackers by sharing a single counter across all 32
rows, which are mitigated concurrently by DRFMab. At 𝑇𝑅𝐻=500,
DREAM-C requires a storage overhead of only 1KB per bank. We
show that DREAM has comparable or lower overhead than PRAC
even at 𝑇𝑅𝐻=500.

Acknowledgments
We thank Salman Qazi (Google) for feedback on the earlier draft of
the paper. Salman is responsible for identifying the side-channel
for MINT when used with MC-based mitigations. We thank Ste-
fan Saroiu (Microsoft) for maintaining the blog on DRFM (which
was helpful for us in understanding the rate limits of DRFM). We
thank the anonymous reviewers of ISCA-2025 for suggestions and
feedback. This work was supported in part by NSF grant 233304.

References
[1] [n. d.]. SPEC CPU2017 Benchmark Suite. http://www.spec.org/cpu2017/
[2] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,

Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-based
protection against next-generation rowhammer attacks. ACM SIGPLAN Notices
51, 4 (2016), 743–755.

[3] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen, and Ahamd-
Reza Sadeghi. 2019. RIP-RH: Preventing rowhammer-based inter-process attacks.
In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security. 561–572.

[4] Oğuzhan Canpolat, A Giray Yağlıkçı, Ataberk Olgun, İsmail Emir Yüksel,
Yahya Can Tuğrul, Konstantinos Kanellopoulos, Oğuz Ergin, and Onur Mutlu.
2024. Leveraging Adversarial Detection to Enable Scalable and Low Overhead
RowHammer Mitigations. arXiv preprint arXiv:2404.13477 (2024).

[5] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploit-
ing correcting codes: On the effectiveness of ecc memory against rowhammer
attacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 55–71.

[6] Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and Moinuddin K Qureshi. 2022.
SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost Integrity
Protection. In HPCA. IEEE.

[7] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the many sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 747–762.

[8] Nathan Gober, Gino Chacon, Lei Wang, Paul V Gratz, Daniel A Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simula-
tor: Architectural Simulation for Education and Competition. arXiv preprint
arXiv:2210.14324 (2022).

[9] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another flip in the wall
of rowhammer defenses. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 245–261.

[10] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In Detection of Intrusions
and Malware, and Vulnerability Assessment, Juan Caballero, Urko Zurutuza, and
Ricardo J. Rodríguez (Eds.). Springer International Publishing, Cham, 300–321.

[11] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen, Kaveh
Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection
Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implica-
tions. In MICRO. 1198–1213.

788

http://www.spec.org/cpu2017/

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

[12] Aamer Jaleel, Gururaj Saileshwar, Stephen W Keckler, and Moinuddin Qureshi.
2024. PrIDE: Achieving Secure Rowhammer Mitigation with Low-Cost In-DRAM
Trackers. In ISCA. IEEE.

[13] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
2022. Blacksmith: Scalable rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 716–734.

[14] JEDEC. April 2024. JEDEC Updates JESD79-5C DDR5 SDRAM Stan-
dard: Elevating Performance and Security for Next-Gen Technologies.
https://www.jedec.org/news/pressreleases/jedec-updates-jesd79-5c-ddr5-
sdram-standard-elevating-performance-and-security

[15] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder, Moritz Lipp,
and Daniel Gruss. 2022. CSI: Rowhammer-Cryptographic Security and Integrity
against Rowhammer. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 236–252.

[16] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Minimalist open-
page: ADRAMpage-mode scheduling policy for themany-core era. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture. 24–
35.

[17] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2014. Architectural
support for mitigating row hammering in DRAM memories. IEEE CAL 14, 1
(2014), 9–12.

[18] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi,
Lois Orosa, and Onur Mutlu. 2020. Revisiting rowhammer: An experimental
analysis of modern dram devices and mitigation techniques. In ISCA. IEEE, 638–
651.

[19] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh, Namhoon
Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. 2022. Mithril: Cooperative
row hammer protection on commodity dram leveraging managed refresh. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 1156–1169.

[20] Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong, Jeongjin
Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi, Sanga Hyun, Mankeun
Kang, Sangho Lee, Dohong Kim, Sanghyun Ku, Donhyun Choi, Nogeun Joo,
Sangwoo Yoon, Junseok Noh, Byeongyong Go, Cheolhoe Kim, Sunil Hwang,
Mihyun Hwang, Seol-Min Yi, Hyungmin Kim, Sanghyuk Heo, Yeonsu Jang, Ky-
oungchul Jang, Shinho Chu, Yoonna Oh, Kwidong Kim, Junghyun Kim, Soohwan
Kim, Jeongtae Hwang, Sangil Park, Junphyo Lee, Inchul Jeong, Joohwan Cho, and
Jonghwan Kim. 2023. A 1.1V 16Gb DDR5 DRAM with Probabilistic-Aggressor
Tracking, Refresh-Management Functionality, Per-Row Hammer Tracking, a
Multi-Step Precharge, and Core-Bias Modulation for Security and Reliability
Enhancement. In 2023 IEEE International Solid- State Circuits Conference (ISSCC).
1–3. https://doi.org/10.1109/ISSCC42615.2023.10067805

[21] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.

[22] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nico-
las Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double:
Hammering from the next row over. In USENIX Security Symposium.

[23] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse, Her-
bert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2018. ZebRAM: comprehensive
and compatible software protection against rowhammer attacks. In 13th USENIX
- (OSDI 18). 697–710.

[24] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. Rambleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 695–711.

[25] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn. 2019.
TWiCe: preventing row-hammering by exploiting time window counters. In
Proceedings of the 46th International Symposium on Computer Architecture. 385–
396.

[26] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce L. Jacob.
2020. DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE
Comput. Archit. Lett. 19, 2 (2020), 110–113.

[27] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi. 2022. Protrr:
Principled yet optimal in-dram target row refresh. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 735–753.

[28] Micron Technology Inc. 2022. DDR5 SDRAM Datasheet. http s://media-
www.micron.com/-/media/client/global/documents/products/data-
sheet/dram/ddr5/ddr5_sdram_core.pdf

[29] Thomas Moscibroda Onur Mutlu. 2007. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX security.

[30] Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Hao-
cong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F Oliveira, and Onur
Mutlu. 2024. Abacus: All-bank activation counters for scalable and low overhead
rowhammer mitigation. In USENIX Security.

[31] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and Jae W
Lee. 2020. Graphene: Strong yet Lightweight Row Hammer Protection. In 2020
53rd Annual IEEE/ACM MICRO. IEEE, 1–13.

[32] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. {DRAMA}: Exploiting {DRAM} addressing for {Cross-CPU}
attacks. In 25th USENIX security symposium (USENIX security 16). 565–581.

[33] Moinuddin Qureshi. 2025. AutoRFM: Scaling Low-Cost In-DRAM Trackers to
Ultra-Low Rowhammer Thresholds. In 2025 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE.

[34] Moinuddin Qureshi and Salman Qazi. 2025. MOAT: Securely Mitigating Rowham-
mer with Per-Row Activation Counters. In Proceedings of the 30th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1. 698–714.

[35] Moinuddin Qureshi, Salman Qazi, and Aamer Jaleel. 2024. MINT: Securely
Mitigating Rowhammer with a Minimalist In-DRAM Tracker. In MICRO. IEEE.

[36] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J Nair. 2022.
Hydra: enabling low-overhead mitigation of row-hammer at ultra-low thresholds
via hybrid tracking. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 699–710.

[37] K. Asanovic S. Beamer and D. Patterson. 2015. The GAP benchmark suite. In
arXiv preprint arXiv:1508.03619.

[38] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J Nair. 2022.
Randomized row-swap: mitigating Row Hammer by breaking spatial correlation
between aggressor and victim rows. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1056–1069.

[39] Stefan Saroiu and Alec Wolman. 2022. How to Configure Row-Sampling-Based
Rowhammer Defenses. DRAMSec2 (2022).

[40] Anish Saxena, Saurav Mathur, and Moinuddin Qureshi. 2024. Rubix: Reducing
the Overhead of Secure Rowhammer Mitigations via Randomized Line-to-Row
Mapping. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2. 1014–1028.

[41] Anish Saxena and Moinuddin Qureshi. 2024. Start: Scalable tracking for
any rowhammer threshold. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 578–592.

[42] Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas Kogler, Daniel Gruss,
and Moinuddin Qureshi. 2023. Pt-guard: Integrity-protected page tables to
defend against breakthrough rowhammer attacks. In 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 95–
108.

[43] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin Qureshi.
2022. Aqua: Scalable rowhammer mitigation by quarantining aggressor rows at
runtime. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 108–123.

[44] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat 15 (2015), 71.

[45] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. 2018. Mitigating
wordline crosstalk using adaptive trees of counters. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 612–623.

[46] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM stronger against row hammering. In Proceedings of the 54th Annual Design
Automation Conference 2017. 1–6.

[47] Lucian Cojocar Stefan Saroiu, Alec Wolman. 2022. The Price of Secrecy: How
Hiding Internal DRAM Topologies Hurts Rowhammer Defenses. In Proceedings
of International Reliability Physics Symposium (IRPS).

[48] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security (Vienna, Austria) (CCS ’16). New York, NY, USA, 1675–1689.
https://doi.org/10.1145/2976749.2978406

[49] Victor Van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Pad-
manabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. 2018. GuardION: Practical mitigation of DMA-based rowhammer attacks
on ARM. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 92–113.

[50] Minbok Wi, Jaehyun Park, Seoyoung Ko, Michael Jaemin Kim, Nam Sung Kim,
Eojin Lee, and Jung Ho Ahn. 2023. SHADOW: Preventing Row Hammer in
DRAM with Intra-Subarray Row Shuffling. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 333–346.

[51] A Giray Yağlikçi, Minesh Patel, Jeremie S Kim, Roknoddin Azizi, Ataberk Ol-
gun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, et al. 2021. BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAMRows. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 345–358.

[52] Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-hammering
based on memory Locality. In 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[53] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom. 2020. Pthammer: Cross-user-kernel-boundary rowhammer through im-
plicit accesses. In MICRO. IEEE, 28–41.

789

https://www.jedec.org/news/pressreleases/jedec-updates-jesd79-5c-ddr5-sdram-standard-elevating-performance-and-security
https://www.jedec.org/news/pressreleases/jedec-updates-jesd79-5c-ddr5-sdram-standard-elevating-performance-and-security
https://doi.org/10.1109/ISSCC42615.2023.10067805
https://doi.org/10.1145/2976749.2978406

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

A Impact of Delay on Security of PARA
Consider a PARAdesignwith probability 𝑝 . Let Epoch be the number
of activations between two consecutive mitigations of PARA. The
average length of the Epoch is 1/𝑝 . The length of the Epoch will be
exponentially distributed. So, epoch of size T or greater are expected
to occur with probability (1 − 𝑝)𝑇 or equivalently 𝑒−𝑝𝑇 . Given our
Bank-MTTF of 40K years, the acceptable failure rate per epoch
is 𝑒−40 for single-sided pattern and 𝑒−20 for double-sided pattern.
Therefore, we select 𝑝 = 20/𝑇𝑅𝐻 (at 𝑇𝑅𝐻 of 2000, 𝑝 = 1/100).

}e^(-pX) }e^(-pY)

Mitigation Sample DRFM
X Y

For security, (X+Y)<TRHD

Figure 20: To ensure security under delayed DRFM, the acti-
vations (X+Y) between mitigation and DRFM must be ≤ 𝑇𝑅𝐻 .

Consider a pattern that continuously activates a single row in a
bank. If the DAR is invalid, the rowwill be sampled in the DAR after
X activations and issue a DRFM after Y activations, and the total
duration of (X+Y) must be less than 𝑇𝑅𝐻 , as shown in Figure 20.

Both X and Y are derived from an exponential distribution (with
parameter 𝑝). The summation of these two exponentially distributed
variables results in a Gamma distribution with shape and rate pa-
rameter of 2 and 𝑝 . The probability that the random variable (z)
derived from this distribution has a value exceeding T is given by:

𝑃 (𝑧 ≥ 𝑇) = (1 + 𝑝 ·𝑇) · 𝑒−𝑝𝑇 (1)
Comparing the probabilities of Equation 1 with the exponential

distribution (𝑒−𝑝𝑇), we observe that the failure rate increases by
(1 + 𝑝 · 𝑇). As (𝑝 · 𝑇) equals 20 for our MTTF, the failure rate of
DREAM-R is 20x times higher than DRFMsb. To alleviate this higher
failure rate of DREAM-R, we should operate PARA with a revised
probability (𝑝′), such that we get a 20x lower failure rate. Given
𝑒3 ≈ 20, we need to select 𝑝′ such that 𝑝′ ·𝑇 equals 17. That way,
a 20x increase in failures will give us an effective 𝑝 ·𝑇 = 20. So, 𝑝
must be increased by 17.5% (20/17). At 𝑇𝑅𝐻 of 2000, 𝑝=1/85.

B Impact of Delay on Security of MINT
When MINT is designed with a window size of𝑊 , it selects an
aggressor row for mitigation every𝑊 activations. Based on MINT’s
guarantees [33, 35], no row can receivemore than 40×𝑊 activations,
meaning the threshold (𝑇𝑅𝐻) for a double-sided pattern is 20 ×𝑊 .

If a DRFM command is issued immediately when MINT selects
an aggressor row, the tolerable 𝑇𝑅𝐻 of the MINT design remains
unchanged. However, delaying the DRFM command in DREAM-
R allows an attacker to trigger additional activations, effectively
increasing the tolerable 𝑇𝑅𝐻 .

Sample Issue DRFM
TRHD=20xW TRHD=20.5xW

W Activations

Figure 21: Impact of delaying the launch of DRFM on𝑇𝑅𝐻 for
MINT: Increases 𝑇𝑅𝐻 of MINT by 0.5𝑊 .

Since MINT selects an aggressor row every𝑊 activations and
DREAM-R delays the DRFM command until another aggressor row
is selected, the maximum number of activations an attacker can
induce on a single row increases to 41 ×𝑊 . Consequently, the
tolerable double-sided 𝑇𝑅𝐻 in DREAM-R increases to 20.5 ×𝑊 .

C Impact of Memory BW on DREAM-C
To analyze the impact of memory intensity on the slowdown of
DREAM-C, we run our workloads (see Section 3.2) on 16 cores
while keeping the per-core LLC size and number of memory chan-
nels constant. Doing so, increases the average memory bandwidth
utilization from 66% (8-core) to 77% (16-core). Figure 22 shows the
slowdown caused by DREAM-C for 𝑇𝑅𝐻 of 250, 500, and 1000 for 8
and 16 active cores. We observe that doubling the number of cores
increases both the bandwidth (BW) utilization of the system and
the slowdown caused by DREAM-C. This occurs because higher
memory intensity leads to a greater average number of activations
per row, causing the shared counters in the DREAM Counter Ta-
ble (DCT) to reach the tracker threshold more quickly. As a result,
DREAM-C issues DRFMab frequently, causing increased slowdown.

Cores=8
BW Util=66%

Cores=16
BW Util=77%

Cores=16
BW Util=77%

0

5

10
Sl

ow
do

w
n(

%
)

5.1%

2.6%
0.8%

8.9%

5.5%

2.8%
1.2%

0.2% 0.0%

2x Tracker
Entries

TRHD=250 TRHD=500 TRHD=1K

Figure 22: Slowdown of DREAM-C with 16 cores. Doubling
the DCT entries for a 16-core setup reduces slowdown.

DREAM-C (2x): Tomitigate the increased slowdown in the 16-core
configuration, we propose maintaining a constant number of DCT
entries per core. This means that for a 16-core setup, the number
of DCT entries should be 2x that of an 8-core setup. This approach
aligns with the design of modern multicore processors where LLC
capacity is typically kept constant per core.

The slowdown caused by DREAM-C (2x) with 16 cores is shown
in Figure 22 (shaded). DREAM-C (2x) reduces the slowdown for the
16-core setup from 5.5% to 0.2% at 𝑇𝑅𝐻=500. This slowdown (0.2%)
is even lower than what DREAM-C incurs (2.6%) with the 8-core
setup. This is because doubling the number of cores (from 8 to 16)
does not double the memory intensity of the system. So, DREAM-C
with 2x DCT entries for the 16-core setup reduces the number of
times DCT entries breach the tracker threshold, resulting in fewer
DRFMaband lower slowdown.

D Impact of Mixed Workloads
To analyze the impact of multi-program workloads on DREAM, we
run 10 multi-program benchmarks (formed by combining 8 random
workloads from SPEC2017 [1]). Figure 23 shows the slowdown
incurred by MOAT, DREAM-R with MINT and DREAM-C. The
slowdowns caused by both DREAM-R and DREAM-C are lower
than MOAT for 𝑇𝑅𝐻≥ 500. At 𝑇𝑅𝐻=500, the slowdown incurred by

790

ISCA ’25, June 21–25, 2025, Tokyo, Japan Hritvik Taneja and MoinQureshi

DREAM-C is almost one-third of PRAC, and the slowdown caused
by DREAM-R (9.3%) is lower than that of PRAC (9.7%).

TRH=500 TRH=1000 TRH=2000 TRH=4000
0

2

4

6

8

10

Sl
ow

do
w
n(
%
)

9.7%
9.3%

3.3%
4.5%

0.6%
2.3%

0.0%
1.2%

0.0%

PRAC DREAM-R (MINT) DREAM-C

Figure 23: Slowdown formulti-programworkloads. The slow-
down from DREAM-R is lower than PRAC for 𝑇𝑅𝐻≥ 500.

E Pseudo Code for DREAM-R
Listing 1 and Listing 2 show the pseudo code to implement DREAM-
R for PARA and MINT, respectively. DREAM-R (PARA) decouples
sampling and mitigation, and implicitly samples into DAR after an
ACT. DREAM-R (MINT) also decouples sampling and mitigation,
but performs both implicit and explicit sampling of DAR tomaintain
the security of MINT.

// The following code runs before the ACT is issued
if rand(0, 1) < tg_prob:

if DAR Invalid:
Issue ACT
Issue Pre+S // sample into DAR

if DAR Valid:
Trigger DRFMsb // DAR becomes invalid
Issue ACT
Issue Pre+S // sample into DAR

Listing 1: DREAM-R with PARA: Implicit Sampling and
Decoupled Mitigation

// The following code runs before the ACT is issued
// SAN = Selected Activation Number = rand(0, MINT_W)
// CAN = Current Activation Number
// MC-SAR = Selected Address Register at MC
if CAN == MINT_W:

SAN = URAND[0, MINT_W)
CAN = 0
if MC-SAR is valid: // Explicit Sampling

Trigger DRFMsb // DAR becomes invalid
for all the 8 banks with same bank_id {

if MC -SAR is valid:
Sample MC-SAR into DAR // Dummy ACT and

Pre+S
Invalidate MC-SAR

}
if CAN == SAN and DAR Invalid: // Implicit Sampling

Issue ACT
Issue Pre+S // sample into DAR

if CAN == SAN and DAR Valid:
Issue ACT and Pre
Sample the row in MC-SAR

CAN++

Listing 2: DREAM-R with MINT: Implicit/Explicit Sampling
and Decoupled Mitigation

F Artifact Appendix
F.1 Abstract
This artifact contains the code, traces, and steps to reproduce the
evaluation results for DREAM. Our evaluations use a detailed cycle-
level CPU simulator interfaced with DRAMSim3 configured with
DDR5 specifications. We provide the code and all the traces used
in our experiments. The codebase includes documentation with
instructions on how to compile and run our simulation setup and
Python scripts to generate the required plots. Most of the simulator
code is written in C++; the run scripts are written in bash, and
plotting scripts are written in Python. As part of this artifact, we
will recreate the motivation Figure 5, the key insight Table 5, the
result Figure 9 and Figure 15, and the comparison Figure 19.

F.2 Artifact check-list (meta-information)
• Algorithm: Rowhammer mitigations - PARA, MINT, DREAM-R,
DREAM-C and MOAT

• Program: Cycle level CPU simulator, interfaced with DRAMSim3
• Compilation: Tested with cmake 3.22.1, make 4.3 and gcc 11.4.0
• Binary: DRAMSim3 dynamic library and CPU simulator’s binary
• Run-time environment: All experiments we run on an ARM
server with Ubuntu 22.04.5.

• Hardware: Requires many-core server with at least 1GB memory
per core. We use a cluster of ARM servers with 100s of cores.

• Run-time state: 1GB memory required by every process spawned
during the experiments.

• Execution: Performance overheads and mitigation efficiency.
• Metrics: Performance overhead, mitigation efficiency, and Rowham-
mer threshold evaluations.

• Output: Recreating Figure 5, Table 5, Figure 9, Figure 15, and
Figure 19.

• Experiments: Evaluation of DREAM performance using DRFM.
Instructions in README.

• How much disk space required (approximately)?: 4.2 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Downloading tracesmight take 20-30minutes, depending
on the network bandwidth. Compilation takes less than 5 minutes.

• How much time is needed to complete experiments (approx-
imately)?: Each experiment runs for around an hour or two on
average. We have a total of 726 experiments. So, in total, all the
experiments might take around a day on a 64-core server. Note that
some experiments take 5-6 hours to finish.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License 2.0.
• Data licenses (if publicly available)?: MIT License.
• Workflow automation framework used?: Our run scripts can
use GNU parallel to run simulations across multiple nodes.

• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.15299886

F.3 Description
F.3.1 How to access. The complete artifact, including code and
dataset is hosted at https://github.com/hritwik567/dream-ae.git.

F.3.2 Hardware dependencies. The simulations require a Linux-
based system with at least 1 GB of RAM per core.

F.3.3 Software dependencies.

• GCC 11.4.0 or later
• CMake 3.22.1 or later

791

https://doi.org/10.5281/zenodo.15299886
https://github.com/hritwik567/dream-ae.git

DREAM: Enabling Low-Overhead Rowhammer Mitigation
via Directed Refresh Management ISCA ’25, June 21–25, 2025, Tokyo, Japan

• Python 3.x with Matplotlib and NumPy
• Bash for execution scripts

F.3.4 Data sets. Weprovide a set of execution traces for SPEC2017 [1],
GAP [37] and STREAM workloads. Instructions in README.

F.4 Installation
• Clone the repository from GitHub: git clone https://github.
com/hritwik567/dream-ae.git

• Download the traces from Google Drive. Instructions in
README.

• Follow the steps in README

F.5 Experiment workflow
• Compile the simulators (Steps in README)
• Run the experiments
• Collect Stats

• Generate Plots

F.6 Evaluation and expected results
The artifact includes scripts to reproduce the key results from the
paper: Figure 5, Table 5, Figure 9, Figure 15, and Figure 19.

F.7 Experiment customization
Users can adjust the number of parallel experiments using the
MAX_JOBS variable in the runall.sh bash script.

F.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae

792

https://github.com/hritwik567/dream-ae.git
https://github.com/hritwik567/dream-ae.git
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Threat Model
	2.2 DRAM Organization
	2.3 Rowhammer
	2.4 MC-side Rowhammer Defense
	2.5 Directed Refresh Management (DRFM)
	2.6 Implementing MC Mitigation with DRFM
	2.7 Impact of DRFM on Randomized Tracking
	2.8 Impact of DRFM on Counter-Based Tracking
	2.9 Goal of our Paper

	3 Evaluation Methodology
	3.1 Simulation Framework
	3.2 Workload Characterization

	4 Reduce DRFM Slowdown via DREAM-R
	4.1 Observation: The Problem of Low RLP
	4.2 Insight: Improve RLP by Delaying DRFM
	4.3 DREAM-R: Design and Operation
	4.4 Impact of DREAM-R on Tolerated TRH
	4.5 DREAM-R: Performance Results
	4.6 Sensitivity to Rowhammer Threshold
	4.7 Not All Randomized Trackers are Equal

	5 DREAM-C: Reducing SRAM Overhead
	5.1 Insight-1: Exploit RLP via Group-Tracking
	5.2 Insight-2: Use Randomized-Grouping
	5.3 DREAM-C: Overview and Design
	5.4 Structures and Operation
	5.5 Vertical Sharing: Further Reducing Storage
	5.6 Results: Impact of Grouping Function
	5.7 Results: Sensitivity to Threshold
	5.8 Comparison with ABACuS

	6 Impact of DRFM Rate-Limits on DREAM
	6.1 Handling DRFM Rate-Limits for DREAM-R
	6.2 Impact on Threshold of DREAM-R
	6.3 Handling DRFM Limits for DREAM-C
	6.4 Eliminating Rate-Limit of DRFM

	7 Related Work
	7.1 Comparison with MOAT and Panopticon
	7.2 Efficient or Exhaustive Tracking
	7.3 Mitigative Actions
	7.4 Error Correction
	7.5 Software-Based Defenses

	8 Discussion: Why MC-Side Mitigations?
	9 Conclusion
	Acknowledgments
	References
	A Impact of Delay on Security of PARA
	B Impact of Delay on Security of MINT
	C Impact of Memory BW on DREAM-C
	D Impact of Mixed Workloads
	E Pseudo Code for DREAM-R
	F Artifact Appendix
	F.1 Abstract
	F.2 Artifact check-list (meta-information)
	F.3 Description
	F.4 Installation
	F.5 Experiment workflow
	F.6 Evaluation and expected results
	F.7 Experiment customization
	F.8 Methodology

