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Abstract
Rowhammer has worsened over the last decade. Existing in-DRAM
solutions, such as TRR, were broken with simple patterns. In re-
sponse, the recent DDR5 JEDEC standards modify the DRAM array
to enable Per-Row Activation Counters (PRAC) for tracking aggressor
rows. They also extend the DRAM timings to support the opera-
tions required to update the PRAC counters. Unfortunately, the in-
creased memory timings cause significant performance overheads
(on average 10%) even for benign applications and even at current
Rowhammer thresholds. The goal of this paper is to minimize the
slowdown of PRAC while retaining the security benefits of PRAC.

This paper proposes Mitigating Rowhammer with Probabilistic
Activation Counts (MoPAC), which reduces the slowdown of updat-
ing the PRAC counters by performing the updates probabilistically,
thereby incurring the latency overhead of counter updates for only
a small subset of activations. To ensure security in the presence
of probabilistic counters, MOPAC adjusts the threshold at which
the row undergoes mitigation. We propose two variants of MoPAC:
MoPAC-C (Memory-Controller Side) and MoPAC-D (DRAM Side).

MoPAC-C relies on having two types of precharge commands:
one that incurs normal latency and does not do counter updates, and
the other that incurs higher latency and performs counter updates.
MoPAC-C probabilistically chooses when the longer precharge
must be used to perform update of the PRAC counter. MoPAC-D is
a completely in-DRAM solution that probabilistically selects which
activations will be selected for performing counter updates and
obtains the time required for counter-updates using ALERT or REF.
Our evaluations show that, for a Rowhammer threshold of 500 (10×
lower than current thresholds), MoPAC-C and MoPAC-D incur an
average slowdown of only 1.7% and 0.7%, much less than the 10%
incurred by PRAC. MoPAC removes one of the major obstacles to
the commercial adoption of PRAC.
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1 Introduction
Rowhammer is a disturbance error that occurs when rapid acti-
vations of a DRAM row cause bit-flips in neighboring rows [20].
Rowhammer is not only a reliability challenge, but also a serious
security threat. The Rowhammer Threshold (𝑇𝑅𝐻 ), which is the num-
ber of activations required to induce a bit-flip, has continued to
decrease, lowering from 140K [20] (in 2014) to 4.8K [18] (in 2020).
Due to the lack of publicly available characterization data for DDR5
modules, the current and future trend of Rowhammer threshold
is less clear. However, research on architectural solutions against
lower Rowhammer thresholds is still vital as it can mitigate the risk
posed by low-threshold devices, if and when such devices arrive.
This is a preferable approach to waiting for devices to be broken
by attacks and then trying to design a solution for such devices.

Typical hardware-based mitigation for Rowhammer relies on a
tracking mechanism to identify the aggressor rows and refresh the
victim rows [11]. DDR memories have employed Target Row Refresh
(TRR), in which a small per-bank tracker (1-32 entries) would iden-
tify aggressor rows, and the mitigation would be performed under
the shadow of refresh (REF) operations. As TRR was not a princi-
pled design, patterns such as TRRespass [8] and Blacksmith [13]
could easily bypass TRR and still cause bit-flips. Developing se-
cure Rowhammer mitigation has been the subject of much research
in both academia and industry, and JEDEC (memory standards
body) has recently introduced dramatic changes to DRAM array
and interface with the aim of securely mitigating Rowhammer.

PRAC, The Good: JEDEC recently announced an extension to
DDR5, which includes Per-Row Activation Counting (PRAC) and
ALERT-Back-off (ABO). PRAC modifies the DRAM array to have
an activation counter with each row, and extends the DRAM tim-
ings to incorporate the read-modify-write required to update the
counter. The ABO protocol enables the DRAM chip to pause the
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Figure 1: (a) PRAC extends the DRAM row with a counter. ABO allows the DRAM to get time from the memory controller (b)
PRAC increases precharge (PRE) time to perform read-modify-write of the PRAC counter (c) Our proposal, MoPAC, updates
PRAC counters with probability "p", thus avoiding the latency of counter updates for most of the activations (d) PRAC incurs
10% slowdown, MoPAC can reduce the slowdown to only 0.2% to 2.5% as 𝑇𝑅𝐻 decreases from 4K (near-term) to 250 (long-term).

Memory Controller (MC) to allow the DRAM chips the time to per-
form Rowhammer mitigation. PRAC represents one of the biggest
changes to DRAM-array design in decades. ABO represents one of
the biggest changes to the memory interface in decades, effectively
enabling DRAM to communicate with the memory controller un-
der standard operation for the first time. Recent research [5, 31]
shows that PRAC+ABO can securely mitigate Rowhammer, even at
ultra-low thresholds. PRAC+ABO is likely to become a mandatory
feature for the next generation (DDR6/LPDDR6) of memory devices
(according to discussions at the DRAMSec-2024 panel).

PRAC, The Bad:As PRAC stores the activation counters in DRAM,
it requires changes to the DRAM timings to perform counter up-
dates. These counter operations increase the DRAM timings signif-
icantly [14]. For example, the Row-Cycle Time (𝑡𝑅𝐶) increases by
more than 10% (46ns to 52ns) and the Precharge Time (𝑡𝑅𝑃 ) increases
by 150% (14ns to 36ns). The increased timing affects every memory
activation, even at current thresholds where ABO is unlikely to
get triggered, thus causing significant slowdown. Our evaluations
show that PRAC causes an average slowdown of 10% (constant for
thresholds of 100-4K). We contend that such a high performance
overhead represents a significant obstacle to the widespread adop-
tion of PRAC. The goal of our paper is to make PRAC practical by
minimizing the slowdown associated with counter-updates.

Insight: To tolerate a threshold of 𝑇𝑅𝐻 , the PRAC-based solution
must send an ALERTwhen a row reaches a specifiedAlert Threshold
(𝐴𝑇𝐻 ). As mitigation is not instantaneous, the value of ATH is
slightly lower than 𝑇𝑅𝐻 . Mitigation of the row occurs during the
time provided by ABO. We note that the likelihood of encountering
a row with 100+ activations is quite low for typical workloads.
So, for current 𝑇𝑅𝐻 values (4.8K) or even future 𝑇𝑅𝐻 values (500,
almost 10× lower than the current 𝑇𝑅𝐻 ), most counter-updates are
not useful, as the row is highly unlikely to reach 𝐴𝑇𝐻 . However,
PRAC continues to incur the latency overhead of counter-updates
for every activation, even if most of these updates are unnecessary.
Our key insight to reduce the latency overheads of the counter-
updates is to perform the updates probabilistically. Therefore, the
latency overhead of PRAC counter updates can be restricted to only
a small subset of activations.

MoPAC: To reduce PRAC latency overheads, we propose MoPAC
(Mitigating Rowhammer with Probabilistic Activation Counting). As
shown in Figure 1(c), on an activation, MOPAC decides with proba-
bility 𝑝 to do the counter-update and otherwise skips the update.
First, to ensure security, this parameter 𝑝 must be selected carefully
for any given 𝑇𝑅𝐻 to ensure that a sufficient number of counter
updates are still performed on a row if it is activated 𝑇𝑅𝐻 times.
Second, the 𝐴𝑇𝐻 of MoPAC must be revised to 𝐴𝑇𝐻∗to account
for the fact that sampling can sometimes undercount the updates
to some rows. We perform a rigorous security analysis to deter-
mine both the safe 𝑝 for a given 𝑇𝑅𝐻 and the associated 𝐴𝑇𝐻∗. For
example, for 𝑇𝑅𝐻 values of 4K, 2K, 1K, 500, and 250, MoPAC uses
𝑝 = 1/64, 1/32, 1/16, 1/8, and 1/4, respectively.

As MoPAC uses counter updates for only a small subset of ac-
tivations, it proportionately incurs the PRAC latency overheads
for only that small subset of activations. Therefore, MoPAC can
theoretically incur an overhead of PRAC that is reduced proportion-
ately by p. As shown in Figure 1 (d), while PRAC incurs an average
slowdown of 10% (as 𝑇𝑅𝐻 varies from 4K to 125), the slowdown
of MoPAC varies form 0.2% (at 𝑇𝑅𝐻 of 4K, near-term) to 1.5% (at
𝑇𝑅𝐻 of 500, 10x lower than current 𝑇𝑅𝐻 ) to 2.5% (at 𝑇𝑅𝐻 of 250,
long-term). Thus, MoPAC can significantly reduce the performance
overheads of PRAC and make it appealing for adoption.

We propose two implementations for MoPAC. The first design
makes probabilistic decisions at the memory controller (MoPAC-C,
Memory Controller Side). The second design makes probabilistic
decisions entirely within DRAM (MoPAC-D, DRAM Side).
MoPAC-C: MoPAC-C relies on having two types of precharge
commands: one that incurs normal latency and does not perform
counter updates, and the other that incurs higher latency and per-
forms counter updates. On an activation, the MC decides with
probability 𝑝 whether to perform a counter-update. If so, on the
subsequent precharge, the MC chooses the precharge operation
with the longer latency and performs the counter update. As most of
the precharge operations are done with normal latency, the latency
overhead of PRAC is reduced in proportion to 𝑝 . For our default
𝑇𝑅𝐻 of 500, MoPAC-C incurs an average slowdown of only 1.5%.
MoPAC-D:MoPAC-D is a completely in-DRAM solution that avoids
the need for two separate precharge commands. MoPAC-D uses
PRAC but without its inflated memory timings, so the memory
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controller always uses regular precharge operations. With MoPAC-
D, the DRAM chip probabilistically selects which activations will
perform counter updates and buffers the row-address in a per-bank
queue. The key insight in MoPAC-D is to obtain the time required
for performing counter-updates using the ABO command. Each
ABO provides the time for performing counter updates for five rows.
The probabilistic selection of MoPAC-D reduces the requirement
for performing ABO. MoPAC-D further reduces the rate of ABO by
performing counter-updates of a few entries during refresh. At a
𝑇𝑅𝐻 of 500, MoPAC-D incurs an average slowdown of only 0.7%.
Contributions: Our paper makes the following contributions:

(1) To the best of our knowledge, this is the first paper to reduce
the latency overheads associated with counter-updates of
PRAC, which is a significant obstacle to the adoption of
PRAC.

(2) We proposeMoPAC, which uses Probabilistic Activation Count-
ing to reduce the overheads of doing PRAC counter-updates.
We provide the security analysis to derive the 𝑝 and 𝐴𝑇𝐻∗

for a given Rowhammer threshold.
(3) We proposeMoPAC-C, a memory-controller side implementa-

tion of MoPAC that uses the MC to decide which activations
perform counter-updates and appropriately uses precharge
operations with normal/longer timings.

(4) We propose MoPAC-D, a completely in-DRAM implemen-
tation of MoPAC that probabilistically selects which activa-
tions will perform counter-updates, buffers them, and uses
ABO to obtain time for performing the counter-updates.

We note that MoPAC-C and MoPAC-D offer different trade-offs.
If JEDEC wants minimal changes to the specifications and DRAM
vendors agree to implement the design, then use MoPAC-D. If
JEDEC prefers not to burden the DRAM vendors with the design,
then useMoPAC-C to offer the SOC vendors an option to implement
a solution that recovers the 10% performance lost to PRAC.

2 Background and Motivation
2.1 Threat Model
Our threat model assumes an attacker can issue memory requests
for arbitrary addresses. The attacker can choose the memory system
policy that is best suited for the attack. The attacker knows the
defense algorithm, but not the outcome of the random number
generator. We declare an attack to be successful when any row
receives more than the threshold number of activations without
any intervening mitigation or refresh. The recent RowPress1 [23]
attack is kept out-of-scope as it can be mitigated by converting
row-open time into equivalent activations [34].

2.2 DRAM Architecture and Parameters.
DRAM has deterministic timings, which are specified as part of
the JEDEC standards (see Table 1). DRAM chips are organized as
banks, which are two-dimensional arrays consisting of rows and
columns. To access data from DRAM, the memory controller must
first issue an activation (ACT) to open the row. To access data from
another conflicting row, the open row must first be precharged
1We discuss the compatibility of our proposal with Row-Press in Appendix-A.

(PRE). The Row Address Strobe (RAS) timing indicates the minimum
time between ACT and PRE. To ensure data retention, the data in
DRAM gets refreshed every 𝑡𝑅𝐸𝐹𝑊 (32ms). To reduce the latency
impact of refresh, memory is divided into 8192 groups, and a REF
operation, issued every 𝑡𝑅𝐸𝐹𝐼 (3900ns), refreshes one group.

Table 1: DRAM Timings (DDR5-6000AN and PRAC [14]).

Parameter Description Base PRAC
𝑡𝑅𝐶𝐷 Time for performing ACT 14ns 16ns
𝑡𝑅𝑃 Time to precharge an open row 14ns 36ns
𝑡𝑅𝐴𝑆 Minimum time a row must be kept open 32ns 16ns
𝑡𝑅𝐶 Time between successive ACTs to a bank 46ns 52ns
𝑡𝑅𝐸𝐹𝑊 Refresh Period 32ms 32ms
𝑡𝑅𝐸𝐹𝐼 Time between successive REF Commands 3900ns 3900ns
𝑡𝑅𝐹𝐶 Execution Time for REF Command 410ns 410ns

2.3 DRAM Rowhammer Attacks
Rowhammer [20] occurs when an aggressor row is activated fre-
quently, causing bit-flips in nearby victim rows. Rowhammer is
a serious security threat [6, 8, 10, 21, 26, 40, 46]. The minimum
number of activations to an aggressor row to induce bit-flip in a
victim row is called the Rowhammer Threshold (𝑇𝑅𝐻 ). 𝑇𝑅𝐻 can be
for a single-sided pattern (𝑇𝑅𝐻𝑆 ) or a double-sided pattern (𝑇𝑅𝐻𝐷 ).
𝑇𝑅𝐻 has dropped from 139K (𝑇𝑅𝐻𝑆 ) in 2014 [20] to 4.8K (𝑇𝑅𝐻𝐷 )
in 2020 [18]. The lack of characterization data since 2020 (espe-
cially for DDR5 devices) means there is less clarity on the trend of
Rowhammer threshold. Therefore, in our study, we will analyze
solutions for thresholds2 of up-to 250 (with a default 𝑇𝑅𝐻 of 500).

Solutions for mitigating Rowhammer typically rely on a mecha-
nism to identify the aggressor rows and then perform a mitigation
by refreshing the victim rows. The identification of aggressor rows
can be done either at the Memory Controller (MC) or within the
DRAM chip (in-DRAM). As Rowhammer is a DRAM problem, SoC
vendors are typically hesitant to devote a significant amount of
SRAM storage to track aggressor rows. Therefore, the industry
is moving towards in-DRAM tracking. In our paper, we focus on
mitigations that perform in-DRAM tracking.

2.4 Space-Time Needs of In-DRAMMitigation
In-DRAMMitigation has two parts: Time (for doing mitigation) and
Space (for tracking aggressor rows). In-DRAM mitigation typically
performs the mitigation transparently during the time provisioned
for the refresh operations. For guaranteed protection, the in-DRAM
tracker must be able to identify all aggressor rows. Unfortunately,
the SRAM budget available for tracking within the DRAM chip is
severely limited. Therefore, commercial in-DRAM trackers (such
as TRR [11] from DDR4) track only a few entries (1-30), and can
be broken within a few minutes using patterns [8, 13]. ProTRR [25]
and Mithril [19] bound the number of tracking entries required to
securely mitigate Rowhammer at a given 𝑇𝑅𝐻 . These studies show
that an optimal trackers need several hundred/thousand entries
per bank (e.g. 1400 entries at 𝑇𝑅𝐻 of 1K). This SRAM overhead is
prohibitive for commercial adoption.

2For the rest of this paper, we use𝑇𝑅𝐻 to implicitly mean𝑇𝑅𝐻𝐷 .
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Figure 2: Performance Impact of PRAC at 𝑇𝑅𝐻 of 4000, 500, and 100. Across all three 𝑇𝑅𝐻 , PRAC causes identical slowdowns, 10%
on average and 18% in the worst case. We assume that MOAT [31] is used as the Rowhammer mitigation design for PRAC.

2.5 PRAC+ABO: Principled Mitigation
Recently, JEDEC announced Per-Row Activation Counters (PRAC)
andAlert-Back-off (ABO) as ameans of securelymitigating Rowham-
merwithout relying on significant SRAMoverheads. PRACmodifies
the DRAM array to store a per-row counter, which is incremented
for each activation. The actual update of the per-row counter occurs
during the precharge of the row, during which the PRAC counter
is read, incremented, and written back, and then the precharge
operation gets performed. The counter maintenance affects impor-
tant DRAM timings. For example, as shown in Table 1, the time
for precharge (𝑡𝑅𝑃 ) increases from 14ns to 36ns (2.57×) and the
row-cycle time (𝑡𝑅𝐶) increases from 46ns to 52ns (1.13×).

ABO addresses the time requirements for in-DRAM Rowhammer
mitigation. Figure 3 shows an overview of ABO. When ALERT is
asserted, the memory controller can perform normal operations for
180ns, after which the MC must stall all operations and issue a Re-
fresh Management (RFM) command. To avoid back-to-back ALERTs,
the ABO specifications require non-zero activations between two
ALERTs. We use 1 RFM per ABO, so DRAM is unavailable for 350ns.

ALERT
180ns

(Normal)
350ns
(tRFM)

1 ACT

MC stops all operations

Figure 3: Overview of Alert-Back-Off (ABO).

2.6 MOAT: Secure Mitigation with PRAC+ABO
PRAC+ABO provides a framework for principled in-DRAM mitiga-
tion. However, security is still determined by the implementation.
As ABO is sub-channel wide (32 banks), triggering ABO to mitigate
one row of a single bank is not optimal, therefore each bank must
buffer mitigation candidates in an SRAM buffer and mitigate them
on ABO. MOAT [31] is a recent work that showed that the Panopti-
con [2] design, which formed the basis for PRAC+ABO, is insecure.
Panopticon uses an 8-entry FIFO queue per bank, and an attacker
can fill up the queue and continue to hammer the youngest row to
cause almost 8× more activations than the queuing threshold.

MOAT provides a single-entry per bank implementation for
PRAC+ABO that is provably secure. The key insight of MOAT is to
keep track of a single row that has the highest count (encountered
since the last mitigation). If a row with a higher counter value is
accessed, that row overwrites the currently tracked row. When the
row reaches an ALERT threshold (ATH), ABO is asserted, and all
banks of the sub-channel perform a mitigation of their tracked row.
The tracked entry is invalidated and the process repeats.

As ABO permits 180ns of activity before the memory controller
stalls, an attacker can use the inter-ABO activations to cause more
than ATH activations on the row. So,𝐴𝑇𝐻 must be chosen carefully
taking into account the slippage of activations between ALERTs.
MOAT provides a model for calculating ATH for a given 𝑇𝑅𝐻D.
Table 2 shows the ATH as 𝑇𝑅𝐻 is varied from 1000 to 250. For
example, for a𝑇𝑅𝐻 of 500,𝐴𝑇𝐻 must be set to 472.3 MOAT showed
that the PRAC+ABO framework can be used to tolerate ultra-low
Rowhammer thresholds (𝑇𝑅𝐻 of 100) while incurring negligible
slowdown due to ABO. In our study, we will assume MOAT as a
secure implementation of PRAC+ABO.

Table 2: The ALERT Threshold (ATH) of MOAT

Rowhammer Threshold (𝑇𝑅𝐻 ) 1000 500 250
MOAT ALERT Threshold (𝐴𝑇𝐻 ) 975 472 219

2.7 The Problem: Latency Overheads of PRAC
While PRAC provides a principled framework for secure Rowham-
mer mitigation, it suffers from a major impediment for adoption.
The increased latency of memory timings (to do counter updates)
is incurred on every activation and slows down regular memory
operations (even if ABO never gets triggered).

Consider the time to perform the precharge operation (𝑡𝑅𝑃 ).
PRAC increases 𝑡𝑅𝑃 from 14ns to 36ns. Figure 4 shows the latency
for servicing a read operation (to Row-B) while a conflicting row
(Row-A) is open for some time. The bank must first precharge, then
activate Row-B, then do a read. For the baseline, this incurs a total
3Note that MOAT also uses another parameter called Eligibility Threshold (ETH), which
determines if the tracked row should be mitigated. We use 𝐸𝑇𝐻 = 𝐴𝑇𝐻/2.
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Figure 4: Impact of precharge latency on servicing a memory
read with a row-buffer conflict (a) baseline services the read
in 40ns (b) PRAC needs 62ns, so overall 55% higher latency.

latency of 40ns. For PRAC, due to the higher precharge latency, this
operation would incur 62ns (1.55× latency). Thus, PRAC’s larger
𝑡𝑅𝑃 can cause as much as 55% slowdown.

Even if a bank had a large number of requests, each to a different
row in the bank, the time taken to service the request would be
determined by the row-cycle time, or 𝑡𝑅𝐶 . As PRAC increases 𝑡𝑅𝐶
from 46ns to 52ns, the overall latency of servicing these request
would be 13% higher. Thus, the increased latency of PRAC (to
support the counter updates) can cause a significant slowdown.

2.8 Performance Impact of PRAC Latency
Figure 2 shows the slowdown due to PRAC+ABO as the 𝑇𝑅𝐻D is
varied from 4K to 500 to 100. We observe that the overhead of
PRAC+ABO remains identical4 across all three thresholds, 4K to
100. As the rate of ABO is negligibly low (almost zero), almost all
the slowdown is due to the latency overheads of PRAC. On average,
the slowdown from PRAC is 10%.

We note that the slowdown depends on the characteristics of
the application. For example, stream workloads (add, triad, copy,
scale) have negligible slowdown from PRAC as they have high
row-buffer hit-rate and are not latency-sensitive applications. Such
workloads are bandwidth bound, and as PRAC does not impact
memory bandwidth, the overheads are negligible (1%). For other
workloads (latency bound), the PRAC overhead often exceeds 10%.

The significant slowdown caused by PRAC, even at the current
(near-term) threshold of 4K and future threshold of 500 (almost 10×
lower than current), means that adopting PRAC would subject the
system to an average slowdown of 10%. Such a high slowdown is a
significant obstacle to the adoption of PRAC in current systems.

2.9 Goal of Our Paper
The goal of our paper is to get the strong Rowhammer protection
of PRAC while minimizing the latency overheads associated with
the PRAC counter-updates. Our key insight is that the overheads of
PRAC counter updates can be reduced by doing the updates with a
small probability and appropriately revising the ALERT threshold
(𝐴𝑇𝐻 ). Thus, the latency penalty of counter-update operations can
be restricted to only a small subset of activations.

4The slowdown of PRAC+ABO increases when𝑇𝑅𝐻𝐷 is below 100. For example, at
𝑇𝑅𝐻𝐷 of 50, PRAC+ABO incurs 13% slowdown, and this increased slowdown is due to
the higher rate of ABO. If we reach𝑇𝑅𝐻𝐷 below 100, PRAC latency may be acceptable.

3 Experimental Methodology
3.1 Configuration
We use DRAMSim3 [22] with a detailed memory model configured
with specifications for DDR5 (see Table 1). Table 3 shows our system
configuration. We use the Minimalist Open Page (MOP) [16] policy
with 4 lines per row. For ABO, we use a mitigation level of 1, so an
ALERT stalls the memory-controller for 350ns.

Table 3: Baseline System Configuration
Out-of-Order Cores 8 core, 4GHz, 4-wide, 256 entry ROB

Last Level Cache (Shared) 8MB, 16-Way, 64B lines
Memory specs 32 GB, DDR5 (JESD79-5C)

t𝐴𝐿𝐸𝑅𝑇 180ns (normal) + 350ns (RFM) = 530ns
Banks x Sub-channel x Rank 32×2×1

Rows 64K rows per bank, 8KB rows
Mapping and Closure Policy MOP [16], Open-Page

3.2 Workloads
We use all 12 benchmarks from SPEC-2017 that have an MPKI
of greater than 1. We also use masstree [24], a key-value store,
and four benchmarks from the STREAM suite [27]. We run these
workloads in 8-core rate mode. In addition, we also create sixmixed
workloads using randomly selected SPEC benchmarks. We run the
workloads on 8 cores until all cores complete 100𝑀 instructions.
We measure performance using weighted speedup.

Table 4 shows workload characteristics, namely: (1) the number
of misses per 1000 instructions (𝑀𝑃𝐾𝐼 ), (2) row-buffer hit-rate
(𝑅𝐵𝐻𝑅), (3) mean activations per refresh interval per bank (𝐴𝑃𝑅𝐼 ),
and (4,5) the average number of rows in a bank that are activated
64+ and 200+ times in a refresh period of 32ms (𝐴𝐶𝑇 -64+ and 𝐴𝐶𝑇 -
200+). We note that given ABO stall-time of 350ns, triggering even
100 ABO per refresh period (32ms) causes only a 0.1% slowdown.

Table 4: Workload Characteristics

Workloads 𝑀𝑃𝐾𝐼 𝑅𝐵𝐻𝑅 𝐴𝑃𝑅𝐼 𝐴𝐶𝑇 -64+ 𝐴𝐶𝑇 -200+
bwaves 42.3 0.51 14.1 0.0 0.0
parest 28.9 0.61 12.6 155.4 10.5
mcf 28.8 0.47 16.9 3.1 0.0
lbm 28.2 0.29 19.4 13.3 0.0

fotonik3d 25.4 0.23 19.5 0.4 0.0
omnetpp 10.2 0.25 19.7 49.3 10.1
roms 8.2 0.62 10.4 1.2 0.0
xz 6.1 0.05 20.7 164.0 0.0

cactuBSSN 3.5 0.00 16.3 0.0 0.0
xalancbmk 2.0 0.54 8.7 0.0 0.0

cam4 1.6 0.58 5.6 0.0 0.0
blender 1.5 0.37 6.0 0.0 0.0
mix1 8.6 0.45 16.4 168.9 13.3
mix2 7.1 0.42 15.8 139.6 4.5
mix3 6.4 0.41 17.2 127.1 11.0
mix4 5.0 0.44 15.9 209.6 13.6
mix5 4.9 0.47 15.1 136.8 9.9
mix6 4.6 0.44 15.8 123.8 9.7

masstree 20.3 0.55 13.6 14.3 0.0
add 62.5 0.69 10.2 0.0 0.0
triad 53.6 0.69 10.3 0.0 0.0
copy 50.0 0.70 9.8 0.0 0.0
scale 41.7 0.70 9.7 0.0 0.0
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4 MoPAC: Probabilistic Activation-Counting
One of the main obstacles for adoption of PRAC is the high perfor-
mance overhead, which is incurred even at current thresholds. The
main source of this performance overhead is the increased latency
of precharge operation, which is required to support the counter up-
dates of PRAC. To get the security benefits of PRAC while minimiz-
ing the slowdowns caused by counter-updates, we propose MoPAC
(Mitigating Rowhammer with Probabilistic Activation Counting). In
this section, we present the concept of MOPAC, and the next two
sections present concrete implementations.

4.1 MoPAC: The Concept
As shown in Table 4, even for the most stressful workloads, negligi-
bly small number of rows are likely to reach𝑇𝑅𝐻 (e.g. for𝑇𝑅𝐻 ≥ 250).
Thus, the counter-updates for most of the rows are unnecessary,
as we can maintain the counters approximately and still be able
to identify rows that incur a large number of activations and are
likely to reach 𝑇𝑅𝐻 . The key insight in MoPAC is to do the counter
updates probabilistically, thereby restricting the latency overhead
of PRAC to only a small subset of activations (the ones that perform
counter updates). Figure 5 shows an overview of MoPAC. On an
activation, MoPAC decides with probability 𝑝 to do the counter-
update, and skips the update otherwise. Thus, MoPAC can avoid
counter-updates for most activations. For example, for a 𝑝 of 1/8,
the average slowdown of PRAC can be reduced by 8× from 10% to
about 1.25%, thus making PRAC appealing for adoption.

Skip Update
(Avoid Overhead)

ACT

p Update Counter
(Incur Overhead)

(1-p)

Revise ATH

Figure 5: Overview of MoPAC. MoPAC performs counter-
updates with a small probability (p) and skips most of the
counter-updates. The ALERT Threshold (𝐴𝑇𝐻 ) is revised.

4.2 Security Considerations for MoPAC
To ensure the security of MoPAC, the parameter 𝑝 must be selected
carefully to ensure that a sufficient number of counter-updates are
still performed on a row if it is activated 𝑇𝑅𝐻 times. Otherwise,
MoPAC could not identify the rows likely to reach 𝑇𝑅𝐻 . Thus, for
any 𝑇𝑅𝐻 , there is a minimum safe value of 𝑝 that can both ensure
security and maximize performance.

As updates occur with probability 𝑝 , each update increments
the PRAC counter by 1/𝑝 . However, probabilistic sampling can still
result in undercounting for some rows. Therefore, the safe value of
𝐴𝑇𝐻∗ will be lower than 𝐴𝑇𝐻 , and this value must be determined
carefully to ensure security. Note that very low values of𝐴𝑇𝐻∗ can
result in frequent ABO and significant slowdowns.

We propose two implementations for MoPAC. The first design
makes the probabilistic decision at the memory controller (MoPAC-
C, memory controller side). The second design makes the proba-
bilistic decision within the DRAM chip (MoPAC-D, DRAM side).

5 MoPAC-C: Memory-Controller Side MoPAC
With MoPAC-C, the memory controller probabilistically decides
which activations are selected for performing the counter-updates.
Thus, with MoPAC-C, the actualoperation of updating the PRAC-
counter and deciding when an ABO gets triggered is still retained
within the DRAM chip. In this section, we provide the design of
MoPAC-C, determine the parameters for a secure design, and ana-
lyze the performance overheads.

5.1 Design and Operation
MoPAC-C relies on having two types of precharge commands: PRE
(normal precharge) and PREcu (precharge with counter update).
PRE incurs normal precharge latency (without the overheads of
PRAC) and does not perform counter updates. PREcu incurs the
higher latency due to PRAC and performs counter updates.

ACT

p

(1-p)

tRCD

PREcu
tRP (PRAC)

(counter update)

tRP (norm)
PRE

Precharge

Figure 6: Overview of MoPAC-C. The memory controller
selects if the activationmust be closedwith normal precharge
(PRE) or precharge with counter-update (PREcu).

Figure 6 shows the overview of MoPAC-C. On an activation, the
MC decides with probability 𝑝 if the ACT is selected to perform a
counter-update. If so, it closes the rowwith PREcu to ensure counter
update. To implement MoPAC-C, the memory controller equips
each bank with one bit of state to identify whether the opened
row must be closed with PRE or PREcu. We also note that PRE uses
a longer 𝑡𝑅𝐴𝑆 , whereas PREcu uses a shorter 𝑡𝑅𝐴𝑆 , and the bit
determines which 𝑡𝑅𝐴𝑆 is used to determine the start of precharge.
As PREcu is used only with probability 𝑝 , the latency overhead of
counter-updates for PRAC gets reduced in proportion to 𝑝 .

5.2 Support from JEDEC Specifications
MoPAC-C requires minor modifications to the JEDEC specifications.
First, we have two types of precharge: PRE and PREcu, with differing
latencies. We note that JEDEC specifications already provide two
types of precharge: PRE and PREs (for example, for assisting with
sampling for the Directed Refresh-Management protocol [14]).

Second, we must provide an interface so that the MC and the
DRAM chip have a shared understanding of the value of 𝑝 used. The
DRAM chip requires the value of 𝑝 to internally set the appropriate
𝐴𝑇𝐻∗. To aid this, we envision that the JEDEC specifications will
require the memory controller to select from a menu of allowable
values of 𝑝 (e.g., 00 for 1/2, 01 for 1/4, 10 for 1/8, and 11 for 1/16).
The MC writes the selected menu choice in aMachine Register (MR)
located on the DRAM chip. This method of selecting allowable
values using MRs is already present in the JEDEC specifications
(for example, this method is currently used to configure the number
of RFM commands issued under ABO).
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5.3 Security Analysis for Determining 𝐴𝑇𝐻 ∗

As MoPAC-C performs updates probabilistically, each update in-
crements the counter by a value equal to 1/𝑝 . However, as random
sampling can sometimes result in an undercount (fewer counter-
updates than expected), to ensure security, 𝐴𝑇𝐻∗, must be revised
to a value less than 𝐴𝑇𝐻 , depending on 𝑝 and 𝑇𝑅𝐻 .

Let 𝑇 be the double-sided Rowhammer threshold. Let 𝐴 be the
𝐴𝑇𝐻 without MoPAC-C. Let 𝑝 be the probability of counter-update
with MoPAC-C. Let 𝑁 be the number of counter updates for a row
under MoPAC-C if it receives𝑇 activations since the last mitigation.
Consider a MoPAC-C design that triggers an ABO when a row has
performed a Critical Number of Counter Updates (C). Therefore, to
ensure the security of MoPAC-C, for any row, the likelihood that
𝑁 < 𝐶 within𝐴 activations since the last mitigation or refresh must
be less than a negligibly small amount 𝜖 , as shown in Lemma-1.

Lemma-1: To ensure security of MoPAC-C, the probability of under-
counting (𝑁 < 𝐶) must be less than an acceptable value 𝜖 .

Determining the Probability of 𝑁 < 𝐶: Given each activation
is independently selected with probability 𝑝 , the probability of
encountering exactly 𝐾 updates in a sequence of 𝐴 activations is
given by the Binomial Distribution, as shown in Equation (1).

𝑃 (𝐾) =
(
𝐴

𝐾

)
· 𝑝𝐾 · (1 − 𝑝)𝐴−𝐾 (1)

Therefore, the probability of getting fewer than 𝐶 updates in 𝐴
activations to a row can be calculated as shown in Equation (2).

𝑃 (𝑁 < 𝐶) = 𝑃 (0) + ...+𝑃 (𝐶 −1) =
𝑖=(𝐶−1)∑︁
𝑖=0

(
𝐴

𝑖

)
·𝑝𝑖 · (1−𝑝)𝐴−𝑖 (2)

Figure 7 shows the binomial distribution for obtaining𝑁 counter-
updates. The bars on the left (shaded) represent the cases with
counter-updates less than C. We want the summation of probabili-
ties of all these cases to be less than an acceptable value (𝜖).

� ����
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����

Undercount
(Failure)

Figure 7: Calculating Prob(𝑁 < 𝐶) using a Binomial Distribu-
tion. The shaded area represents cases of failure (𝑁 < 𝐶).

Determining the value of 𝜖: As MoPAC-C performs updates
probabilistically, it will always have a non-zero probability of failure.
Therefore, the security ofMoPAC-C can only be analyzed within the
constraints of an acceptable failure rate. This is typically captured
in terms ofMean Time to Failure (MTTF) for a DRAM bank. Similarly
to recent work [12, 32] on probabilistic Rowhammer mitigation, we
use a target Bank-MTTF (per-chip) of 10K years, as it ensures that

the Rowhammer failures due to probabilistic mitigation are within
the same range as the rate of naturally occurring failures [1].

The time to conduct𝑇 activations is equal to𝑇 ·𝑡𝑅𝐶 nanoseconds.
There are 3.2 × 1020 nanoseconds within our target MTTF period
of 10K years. Therefore, the total failure budget (𝐹 ) within the time
for doing 𝑇 activations is given by Equation 3.

𝐹 =
𝑇 · 𝑡𝑅𝐶
3.2 × 1020

(3)

𝐹 represents the probability that a victim-row would miss miti-
gation under a continuous attack. Thus, for a single-sided pattern,
this would be equal to the likelihood of escaping mitigation if a
single aggressor row is activated continuously. Per Equation 3, the
value of F depends on the Rowhammer Threshold (higher T values
requires longer attacks). Table 5 shows the value of F for various
threshold values. For 𝑇 = 500, 𝐹 equals 7.2 × 10−17.

Table 5: Values of F and 𝜖 for Varying Threshold

Threshold (T) F 𝜖

250 3.59 × 10−17 5.99 × 10−9
500 7.19 × 10−17 8.48 × 10−9
1000 1.44 × 10−16 1.12 × 10−8

For a double-sided pattern (see Figure 8), failure occurs only
if both sides miss a mitigation simultaneously. For example, if a
mitigation was not performed for row B but was still performed for
row D, then row C will still receive a victim refresh.
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Figure 8: For double-sided attack, both sides (B and D) must
miss mitigation simultaneously to cause flips in Row-C.

Let 𝑃𝑒1 be the probability of escaping the mitigation of a single
row of a double-sided pattern. Let (𝑃𝑒2) be the probability of escap-
ing the mitigation of both sides of a double-sided pattern within the
same round of attack. Then, 𝑃𝑒2 can be estimated by Equation 4.

𝑃𝑒2 = 𝑃𝑒1 · 𝑃𝑒1 = 𝑃2𝑒1 (4)

Thus, in a double-sided pattern, the overall failure probability
is the product of the failure probability of each of the two sides.
This is intuitive as both sides must escape mitigation concurrently.
Therefore, if an acceptable failure probability for a victim row to
miss mitigation is F, then the probability that each of the two sides
of a double-sided pattern will escape mitigation simultaneously
must be equal to the square root of 𝐹 , as shown in Equation 5.

𝐹 = 𝑃2𝑒1 =⇒ 𝑃𝑒1 =
√
𝐹 (5)
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Figure 9: Performance of PRAC and MoPAC-C for different 𝑇𝑅𝐻 . MoPAC-C results in an average slowdown of 0.8%, 1.8%, 3.0% at
𝑇𝑅𝐻 of 1000, 500, and 250, respectively, much lower than the 10% with PRAC.

We note that 𝑃𝑒1 represents the escape probability for MoPAC,
which we denote as 𝜖 . Table 5 shows the value of 𝜖 as the threshold
is varied from 250 to 1K. In general, the acceptable threshold for
failure 𝜖 is given by Equation 6.

𝜖 =
√
𝐹 =

√︂
𝑇 · 𝑡𝑅𝐶
3.2 × 1020

(6)

Determining the minimum value of 𝐴𝑇𝐻∗: For a given value
of 𝑇 , we can determine 𝜖 using Equation 6. For a given 𝜖 , and a
probability of selection 𝑝 , we can determine the number of critical
updates (𝐶) using Equation 2. With MoPAC-C, each time5 a PRAC
counter-update occurs, the PRAC counter is incremented by a value
equal to 1/𝑝 , so we can determine 𝐴𝑇𝐻∗ per Equation 7.

𝐴𝑇𝐻∗ = 𝐶 · (1/𝑝) (7)

To determine𝐶 , we perform a brute-force search from𝐶 = 0 and
increment 𝐶 until the row failure probability (𝑃𝑒1) is just under 𝜖 .
This is the largest 𝐶 with 𝑃𝑒1 less than 𝜖 . Table 6 shows the failure
probability for different values of 𝑇𝑅𝐻 as the value of C is varied
from 20 to 25. The numbers in the parenthesis shows the relative
value normalized to the respective 𝜖 for the given threshold (thus, a
relative value of greater than 1 indicates higher than target failure
probability) The highest value of 𝐶 , whose failure probability does
not exceed 𝜖 , is marked in bold. For example, at 𝑇𝑅𝐻 of 500, the
critical value of 𝐶 would be 22.

Table 6: The row failure probability (𝑃𝑒1) at Varying 𝑇𝑅𝐻

C 𝑇𝑅𝐻 = 250 𝑇𝑅𝐻 = 500 𝑇𝑅𝐻 = 1000
(𝜖 = 5.99 × 10−9) (𝜖 = 8.48 × 10−9) (𝜖 = 1.12 × 10−8)

20 1.9 × 10−9 (0.3x) 6.3 × 10−10 (0.1x) 4.2 × 10−10 (0.03x)
21 6.1 × 10−9 (1.0x) 2.0 × 10−9 (0.2x) 1.3 × 10−9 (0.1x)
22 1.9 × 10−8 (3x) 5.9 × 10−9 (0.7x) 3.8 × 10−9 (0.3x)
23 5.6 × 10−8 (9x) 1.7 × 10−8 (2x) 1.08 × 10−8 (0.9x)
24 1.5 × 10−7 (26x) 4.6 × 10−8 (5x) 2.9 × 10−8 (2.4x)
25 4.1 × 10−7 (69x) 1.2 × 10−7 (14x) 7.6 × 10−8 (6.3x)

5On a victim-refresh, row activation occurs, and the counter is incremented by 1.

5.4 Key Parameters of MoPAC-C
Although the value of 𝑝 can be arbitrarily selected, to ensure that
our implementation is simple, we limit 𝑝 for MoPAC-C only to
powers of two: p = 1/2, 1/4, etc. Furthermore, to avoid frequent
episodes of ABO, we should not select a value of 𝑝 such that 𝐴𝑇𝐻∗

itself is a low value (i.e., less than 10). Table 7 shows the value
of 𝑝 , the associated 𝐶 (Number of Critical Counter Updates), and
𝐴𝑇𝐻∗ as the𝑇𝑅𝐻 varies from 250 to 1K. For our default𝑇𝑅𝐻 of 500,
MoPAC-C can reduce updates by 8× and at 𝑇𝑅𝐻 of 1K, by 16×.

Table 7: Values of 𝑝, 𝐶, and 𝐴𝑇𝐻∗ for Varying 𝑇𝑅𝐻

𝑇𝑅𝐻 𝐴𝑇𝐻 𝑝 𝐶 (𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑠) 𝐴𝑇𝐻∗

250 219 1/4 20 80
500 472 1/8 22 176
1000 975 1/16 23 368

5.5 Performance Overheads
The reduced counter-update operations of MoPAC-C significantly
decreases the performance overhead of PRAC. Figure 9 shows
the slowdown of PRAC and MoPAC-C for 𝑇𝑅𝐻 = 250, 500, 1000.
Note that, as the overhead of PRAC remains the same for all three
𝑇𝑅𝐻 , we show only one bar for PRAC. As MoPAC-C has less fre-
quent counter-updates, it incurs much reduced overheads for PRAC
counter updates (as shown in Table 7). On average, PRAC incurs
a slowdown of 10%, whereas MoPAC-C has slowdowns of only
0.7%, 1.8%, and 3.0% at a 𝑇𝑅𝐻 of 1000, 500, and 250, respectively.
Thus, MoPAC-C is effective at reducing most (or almost all) of the
slowdown of PRAC.

We observe that for each workload, there is a proportinate reduc-
tion in PRAC-related slowdown dictated only by the value of 𝑝 . For
example, workloads with high slowdown, see a significant benefit
(from 18% to 3%, for example). On the other hand, workloads from
Stream workload have negligible slowdown from PRAC (worst case
slowdown is 1%). This occurs because these workloads have stream-
ing patterns, and get high row-buffer hit rates (row-buffer hits are
not penalized by PRAC-related slowdown). Therefore, there is less
potential for improvement with MoPAC-C for such workloads.
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6 MOPAC-D: Completely In-DRAMMoPAC
While MoPAC-C is effective, it requires changes to the MC and
DRAM and JEDEC to support a new command. In this section,
we describe MoPAC-D, a completely in-DRAM version of MoPAC
that does not require any changes to the MC or new commands
from JEDEC. The key insight in MoPAC-D is to probabilistically
select the rows for counter update, buffer them in a per-bank queue,
and obtain the time to perform the updates by triggering an ABO.
We exploit the fact that ABO provides the time to DRAM to do
maintenance, and we can use the time to perform counter-updates
of selected rows. We also describe a way to reduce the rate of ABO
by doing a small number of updates at each REF.

6.1 Design and Operation
Figure 10 shows an overview of MoPAC-D. MoPAC-D provides
each bank with a 16-entry Selected Row Queue (SRQ), which is used
to buffer the rows that have been selected to perform a counter-
update. On each activation, the bank decides, with probability 𝑝 , if
the row must be selected for doing counter-update. Without loss
of generality, we use MINT [32] for this probabilistic selection, as
it ensures that exactly one entry is selected every 1/𝑝 activations
to get inserted into the SRQ.6 Each SRQ entry also contains two
counters: ACtr (Activation Counter) and SCtr (Selection Counter). On
an activation, if the row is already present in the SRQ, the ACtr
is incremented (this is to limit unmitigated activations between
insertion into the SRQ and PRAC counter-update). On an activation,
if the row is selected for counter-update and is already present in
the SRQ, the SCtr associated with the row is incremented. Therefore,
multiple updates to the row can be coalesced into a single entry
and performed with a single PRAC-counter update.

ACT
p

SRQ

ABO

REF

Row
Bank

Ctr
RowID SCtr ACtrVld

Figure 10: Overview of MoPAC-D. MoPAC-D selects activa-
tions with prob "p" and buffers them in the SRQ. The update
to PRAC counters occur by triggering an ABO (or under REF).

The key insight of MoPAC-D is to use ABO to drain the SRQ.
Each ABO provides a time of 350ns to the DRAM bank, without
specifying how the DRAM bank should use this time. MoPAC-
D uses the time to perform counter updates for up-to five rows
(as under ABO, each read-modify-write of a row takes 70ns [14]).
MoPAC-D triggers an ABO, when the SRQ is full. Under ABO, it
takes out 5 entries (in the priority order of highest ACtr first) from
the SRQ and performs the update for these 5 entries.

On an ABO, if the SRQ is full, draining the SRQ is given the first
priority. If SRQ is not full, if the row tracked by MOAT exceeds
6Using PARA instead of MINT would not be secure, as triggering an ABO on SRQ full
would leave the attacker with three more activations under ABO which are guaranteed
to not be inserted into the SRQ. MINT avoids this vulnerability, as the next insertion
after SRQ full can occur only after 1/p activations. In addition, to ensure security, we
insert the entry selected by MINT into SRQ only at the end of the MINT window.

ATH, then ABO is used to mitigate the row tracked by MOAT. A
bank can receive an ABO even when SRQ is not full and the row
tracked by MOAT has not reached ATH (ABO triggered by another
bank). In this case, if SRQ is non-empty, ABO is used to drain the
SRQ, otherwise, to mitigate the row tracked by MOAT.

Although MoPAC-D does not require new commands, it does re-
quire PRAC specifications to use normal memory timings. MoPAC-
D also requires minor storage overheads: each SRQ-entry is 3 bytes,
so MoPAC-D requires a total of 48 bytes of SRAM per bank (less
than the SRAM overhead of 32-entry TRR used in DDR4).

6.2 Reducing Rate of ABO with Drain-on-REF
Consider a workload that performs 16 activations per 𝑡𝑅𝐸𝐹𝐼 . On
average, with 𝑝=1/8, MoPAC-D will insert two entries in SRQ every
𝑡𝑅𝐸𝐹𝐼 . In the steady state, the SRQ will become full, ABO will get
triggered, and 5 entries will be removed. Thus, MoPAC-D will trig-
ger an ABO once every 2.5 𝑡𝑅𝐸𝐹𝐼 , incurring about a 3.5% slowdown
(as 350ns stall time is incurred every 10 microseconds).

To reduce the performance overheads of MoPAC-D (especially
at thresholds of 500 or lower), we propose using a subset of the
REF time to drain the SRQ and perform counter updates of a small
number of SRQ entries. This is similar to current DRAM designs
that use a portion of REF to mitigate an aggressor row. However,
we note that updating the counter of row requires a single activa-
tion, whereas mitigating an aggressor row would require four or
more activations (depending on the blast radius). Thus, updating a
counter incurs a much lower latency than mitigating an aggressor
row. For MoPAC with 𝑝 = 1/16, we assume REF drains one entry,
and for 𝑝 = 1/8, we assume that REF drains two entries. Therefore,
in the steady state, a workload with about 16 activations per 𝑡𝑅𝐸𝐹𝐼
is likely to trigger ABO only infrequently.

6.3 Limiting the Impact of Tardiness
We define Tardiness as the number of activations performed on
a row between when it enters the SRQ and when the counter-
update for the row is performed. With the current design, if a row
undergoes continuous activations, it will enter SRQ and stay in the
SRQwithout performing any updates (as SRQ does not become full).
Tardiness can make MoPAC-D insecure as the row can encounter
𝑇𝑅𝐻 activations without performing any updates to the counters,
even if the row is selected multiple times for counter-updates. We
limit the impact of Tardiness by counting the number of activations
incurred on a row while in SRQ, using the ACtr counter in each
SRQ-entry. The ACtr of an entry is incremented on each activation
to the buffered row.WhenACtr exceeds a Tardiness Threshold (TTH),
MoPAC-D triggers an ABO and forces the draining of SRQ. In our
study, we use a TTH of 32. Thus, the amount of activations after a
row is selected is limited to at-most 32.

6.4 Security Analysis for Determining 𝐴𝑇𝐻∗
The security analysis of MoPAC-D remains similar to MoPAC-C
with two key changes. First, whenwe do a PRAC-counter update, we
must increment the PRAC-counter by a value equal to (1+ SCtr/𝑝),
where the “1" accounts for the activation for writing to the PRAC-
counter. Second, due to Tardiness, a row can encounter extra 𝑇𝑇𝐻
activations. Therefore, instead of operating with 𝐴𝑇𝐻 , our model
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Figure 11: Performance of PRAC and MoPAC-D for different 𝑇𝑅𝐻 . MoPAC-D results in an average slowdown of 0.1%, 0.8%, 3.5%
at 𝑇𝑅𝐻 of 1000, 500, and 250, respectively, much lower than the 10% with PRAC.

must operate with 𝐴′ = 𝐴𝑇𝐻 − 𝑇𝑇𝐻 . Therefore, Equation 2 for
computing the critical number of updates (𝐶) is modified as follows:

𝑃 (𝑁 < 𝐶) = 𝑃 (0)+ ...+𝑃 (𝐶−1) =
𝑖=(𝐶−1)∑︁
𝑖=0

(
𝐴′

𝑖

)
·𝑝𝑖 · (1−𝑝)𝐴

′−𝑖 (8)

6.5 Key Parameters of MoPAC-D
Similar to MoPAC-C, we limit the values of 𝑝 for MoPAC-D to
powers of two. For any given 𝑇𝑅𝐻 , MOAT has an equivalent 𝐴𝑇𝐻 ,
which we need to lower to 𝐴′ to account for Tardiness. We use this
𝐴′ and 𝑝 to compute both the number of critical updates (𝐶) and
the equivalent 𝐴𝑇𝐻∗ for MoPAC-C. Table 8 shows, as 𝑇𝑅𝐻 varies
from 250 to 1000, the value of 𝑝 , 𝐶 , and 𝐴𝑇𝐻∗. Thus, at our default
𝑇𝑅𝐻 of 500, MoPAC-D can reduce updates by 8× before triggering
an ABO when the PRAC counter reaches or exceeds 160 (𝐴𝑇𝐻∗).
We also show the default value of Drain-on-REF used at various
𝑇𝑅𝐻 (this impacts only performance and not security).

Table 8: Values of 𝑝, 𝐶, and 𝐴𝑇𝐻∗ for varying 𝑇𝑅𝐻 .

𝑇𝑅𝐻 𝐴𝑇𝐻 𝐴′ 𝑝 𝐶 𝐴𝑇𝐻∗ Drain-on-REF
250 219 187 1/4 15 60 4
500 472 440 1/8 19 152 2
1000 975 942 1/16 21 336 1

6.6 Impact on Performance Overhead
Figure 11 shows the slowdowns for PRAC and MoPAC-D at 𝑇𝑅𝐻 of
1000, 500, and 250. The overheads of PRAC are similar across all
three 𝑇𝑅𝐻 , so we show only a single bar. The overhead of MoPAC-
D are much lower than PRAC. On average, MoPAC-D incurs a
slowdown of 0.1%, 0.8%, and 3.5% at 𝑇𝑅𝐻 of 1000, 500, and 250,
respectively, much lower than the 10% with PRAC.

At 𝑇𝑅𝐻 of 500 and above, MoPAC-D removes almost all of the
slowdown of PRAC. We note that the overheads of MoPAC-D are
lower than the overheads of MoPAC-C at thresholds of 1000 (0.1%
vs. 0.8% slowdown) and 500 (0.8% vs. 1.8% slowdown). This occurs
because most of the counter-updates of MoPAC-D occur during
the refresh operations. At 𝑇𝑅𝐻 of 1000/500/250, we drain 1/2/4
entries from SRQ on refresh. Therefore, the overhead of ABO for
counter-updates is incurred at a much reduced rate. In contrast,
with MoPAC-C, a fraction (𝑝) of the activations will always incur
higher latency precharge operations.

6.7 Sensitivity to Rate of Drain-on-REF
Figure 12 shows the slowdown forMoPAC-D as the rate of Drain-on-
REF (the number of SRQ entries removed during refresh) is varied.
Even at 𝑇𝑅𝐻 of 1000, not draining any SRQ entries on REF results
in an average slowdown of 3.5%. The number of entries necessary
to drain at REF decreases with increasing 𝑇𝑅𝐻 . The slowdown at
𝑇𝑅𝐻 of 1000 are 3.1%, 0.1%, 0%, and 0% for 0, 1, 2, and 4 drains,
respectively. At 𝑇𝑅𝐻 of 500, it is 6.2%, 2.9%, 0.8%, and 0.1%. And, at
𝑇𝑅𝐻 of 250, it is 14.1%, 10.5%, 7.4%, 3.5%.
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Figure 12: Slowdowns for MoPAC-D with varying drain rate.

6.8 Sensitivity to Number of Entries in SRQ
Figure 13 shows the slowdown for MoPAC-D with varying SRQ
sizes at 𝑇𝑅𝐻 of 1000, 500, and 250. Lower thresholds are most af-
fected by the size of the SRQ, as the queue gets filled up at a faster
rate. For example, at 𝑇𝑅𝐻 of 250, MoPAC-D inserts entries into the
SRQ once every 4 ACTs. In contrast, at 𝑇𝑅𝐻 of 500/1000, MoPAC-D
inserts an entry once every 8/16 ACTs. The slowdowns for 𝑇𝑅𝐻
1000 are 0.5%, 0.1%, and 0.1% for queue sizes of 8, 16, and 32, respec-
tively. For 𝑇𝑅𝐻 of 500, it is 1.9%, 0.8%, and 0.3%. And, at 𝑇𝑅𝐻 of 250,
it is 9.0%, 3.5%, and 2.7%. At𝑇𝑅𝐻 of 250, doubling the SRQ can help
significantly (at 96 bytes SRAM per bank, similar to 32-entry TRR).
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Figure 13: Slowdowns for MoPAC-D with varying SRQ size.
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7 Analyzing Performance Attacks on MoPAC
Thus far, our notion of security has been limited to ensuring that
all aggressor rows are mitigated before they encounter a threshold
number of activations. With any ABO-based solution, an attacker
may use specific patterns to trigger frequent ABOs, resulting in
reduced system performance and potentially Denial of Service (DOS)
attacks on benign applications. Therefore, solutions using ABO
must be analyzed for performance attacks to ensure that they have
an acceptable performance loss even under stressful ABO patterns.
In this section, we analyze the performance impact of MoPAC on
patterns that aim to degrade system performance.

7.1 Latency Model for Activations and ALERT
We split the analysis into two parts: (1) What is the relative time
taken by the benign application if there was noALERT, and (2)What
is the relative stall time of ALERT and how does it impact mem-
ory performance? We measure memory throughput in terms of
activations performed per unit time.

Without ALERT, a bank can perform one activation per 𝑡𝑅𝐶 (for
simplicity, we consider 𝑡𝑅𝐶 as 1 unit of time). As ALERT can stall
the memory for 350ns of time, we consider the stall-time of ALERT
to be equivalent to performing seven activations. If an application
performs 𝑁 ACTs to a bank before the bank encounters a stall due
to ALERT, then it would be able to perform 𝑁 ACTs within a period
of (𝑁 + 7) ACTs, so the slowdown due to ALERT is 7/(𝑁 + 7), as
shown in Figure 14. For our analysis, 𝑁 = 𝐴𝑇𝐻∗, so the slowdown
from a single-bank attack would be 7/(7 +𝐴𝑇𝐻∗).

(A)^N

Bank-1 (A^N)

N ACTs in N+7 units of time Throughput loss = 7/(N+7)

Throughput loss = 7/(alpha*N+7)

ALERT

AA (A)^N A (A)^N

ABOBank-0(A^N)

Bank-2 (A^N)

Bank-3 (A^N)

Variability due to Randomization: 
Bank-0 triggers ABO at alpha*N

0

0

0

Figure 14: Performance attacks (a) single-row on a sin-
gle bank, (b) single-row in multiple banks. Randomization
causes different banks to increase their counter at different
rates, and the fastest bank determines the time to ABO.

7.2 Modeling Multi-Bank Attack
Consider a pattern, as shown in Figure 14, in which we activate
one row each in multiple banks. The accesses are performed in a
circular fashion, going through all the banks. Due to randomization,
some banks will get to ATH* earlier than others (Bank-0 in our
example). The fastest bank to reach ATH* will trigger an ABO and
cause mitigation for all banks. Thus, the bank gets an ABO not after
ATH* activations to a row, but some smaller value 𝛼 · 𝐴𝑇𝐻∗. Thus,
the slowdown fsingle bankcess pattern will be 7/(𝛼 · 𝐴𝑇𝐻∗ + 7).

To estimate 𝛼 , we performed a Monte Carlo analysis on 32 banks
and measured that 𝛼 is approximately 0.55. Thus, to estimate the
slowdown from parallel-bank attacks, we must use 0.55 · 𝐴𝑇𝐻∗.

7.3 MoPAC-C Under Performance Attack
MoPAC-C causes an ABO when a row reaches 𝐴𝑇𝐻∗ activations.
To analyze this, we use the multi-bank pattern in Figure 14. This
patternwill trigger, on average, one ABO per 0.55·𝐴𝑇𝐻∗ activations.
Table 9 shows the slowdown under this attack for MoPAC-C for𝑇𝑅𝐻
of 250, 500, and 1000. Thus, even under stressful patterns, MoPAC-
C incurs a slowdown of only 3% to 14% (compare this to the 10%
average slowdown caused by PRAC even for benign workloads).
Thus, performance attacks are not a concern for MoPAC-C.

Table 9: Impact of Performance Attacks on MoPAC-C

𝑇𝑅𝐻 𝐴𝑇𝐻∗ ABO (Stall) Slowdown
250 84 7 14.0%
500 184 7 6.7%
1000 384 7 3.2%

7.4 MoPAC-D Under Performance Attack
There are three ways to trigger an ABO for MoPAC-D: (1) When
a row reaches 𝐴𝑇𝐻∗, it triggers an ABO to perform Rowhammer
mitigation, (2) When the SRQ is full, MoPAC-D triggers an ABO
to drain the entries from the SRQ, and (3) When the ACtr of one
of the SRQ-entries exceed the Tardiness Threshold (TTH), MoPAC-
D triggers an ABO to drain entries out of the SRQ. We consider
performance attacks for all three cases.

Attack for Triggering Mitigation: This attack is similar to the
one for MoPAC-C and uses the multi-bank pattern illustrated in
Figure 14. It triggers an ABO every 0.55 · 𝐴𝑇𝐻∗ activations.

Attack for SRQ Full: This attack tries to fill the SRQ with a large
number of unique rows. It uses the single-bank pattern of Figure 14.
The number of rows in the pattern is kept much larger than the
number of SRQ entries. We expect an ABO every 5/𝑝 activations.

Attack for Tardiness (TTH): This attack inserts a row into the
SRQ and then tries to have its ACtr reach 𝑇𝑇𝐻 . We use the multi-
bank pattern from Figure 14. We expect an ABO every 𝑇𝑇𝐻 activa-
tions, where 𝑇𝑇𝐻 = 32 is the default Tardiness Threshold.

Table 10 shows the slowdown under the three attacks forMoPAC-
D with 𝑇𝑅𝐻 of 250, 500, and 1000. The slowdown remains within
26%, much less than other memory performance attacks [3, 28, 30].

Table 10: Impact of Performance Attacks on MoPAC-D

𝑇𝑅𝐻 𝐴𝑇𝐻∗ Mitig-Attack SRQ-Attack TTH-Attack
250 64 16.6% 25.9% 17.9%
500 160 7.4% 14.9% 17.9%
1000 352 3.5% 8.1% 17.9%

Impact of Performance Attacks on MoPAC:We note that the
15%-25% throughput loss under performance attacks on MoPAC-
C and MoPAC-D is much lower than other memory contention
attacks, such as row-buffer conflicts [3, 28, 30], which can cause
2×-3× slowdown. Thus, the performance attack on MoPAC does
not create a serious new vulnerability or Denial-of-Service.
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8 MoPAC-D with Non-Uniform Probability
Our implementation of MoPAC-D assumes a uniform probability
(𝑝) when selecting a row for counter updates. We observe that most
(64%) of the rows accessed within tREFW (32ms) receive less than
five activations. We can further reduce the overhead of MoPAC-D
by initially using a lower probability of counter update (when the
counter value is zero/low) and increasing the sampling probability
as the counter value increases. In this Section, we analyze such a
MoPAC-D design with Non-Uniform Probability (NUP).

8.1 Design
Figure 15 shows an overview of MoPAC-D with NUP. On activation,
the DRAM chip reads the PRAC counter value to determine the
update probability. If the counter is 0, then the row is selected with
probability 𝑝/2, and is otherwise selected with probability 𝑝 . Note
that regardless of which probability is used to sample a row, the
row’s counter is always incremented by 1/𝑝 probability.7
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PRAC Counter Value

p/2
p

Figure 15: Overview of MoPAC-D with Non-Uniform Proba-
bility (NUP) of updates. If the PRAC counter value is 0, it is
incremented with probability p/2, else by p. For rows with
few activations, the effective update probability is p/2.

8.2 Security Analysis
Given a non-uniform update probability, we use a Markov Chain
to model the likelihood that the PRAC counter reaches a particular
value after receiving ATH activations. Figure 16 shows the overview
of our Markov-Chain model for analyzing NUP.

p/2
0 1 2 ATH3

p p p

1-p/2 1-p 1-p 1-p

Figure 16: Markov-Chain Model for NUP

The counter starts in state-0. In this state, on activation, it goes
to state-1 with probability p/2. For each non-zero state, it can go
to the next state with probability p. As we do ATH activations, the
maximum value of the counter could be up-to ATH.

After performing the ATH steps for the Markov Chain, we de-
termine the probability that the counter is in each of the particular
states. We select the largest number of critical updates 𝐶 whose
cumulative probability is less than the target failure probability 𝑃𝑒1
(see Table 6), as shown in Equation 9.

max 𝐶 such that
𝑖=𝐶∑︁
𝑖=0

𝑦 [𝑖] < 𝑃𝑒1 (9)

7We also analyzed a more complicated version of NUP, with three probabilities: p/2, p,
and 2p; however, the results with such policies were similar to our simpler design.

We determine 𝐴𝑇𝐻∗ as 𝐶 · (1/𝑝). Table 11 shows the 𝐴𝑇𝐻∗ for
MoPAC-D and NUP. The 𝐴𝑇𝐻∗ with NUP is less than the 𝐴𝑇𝐻∗

without NUP as the initial probability of sampling a row is halved.8

Table 11: 𝐴𝑇𝐻∗ of MoPAC-D and MoPAC-D with NUP

TRHD MoPAC-D (Uniform) MoPAC-D (NUP)
1000 (p=1/16) 336 288
500 (p=1/8) 152 136
250 (p=1/4) 60 56

8.3 Results: Slowdown
Figure 17 shows the average slowdowns of MoPAC-D, with and
without NUP, over the baseline for TRHD of 1000, 500, and 250. On
average, the slowdowns of MoPAC-D without NUP are 0.1%, 0.8%,
and 3.5%, respectively. For MoPAC-D with NUP, the slowdowns are
0%, 0%, and 1.1%, respectively. Thus, NUP can eliminate most of the
overhead of MoPAC-D, and this occurs because most of the rows
receive only a few activations (and such rows use p/2 instead of p for
performing counter updates). At TRHD of 1K and 500, the reduced
selection of rows for counter updates causes fewer insertions than
can be handled by the drain-on-ref, hence the slowdown is zero.
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Figure 17: Slowdown of MoPAC-D with and without NUP at
TRHDs of 1000, 500, and 250. MoPAC-D without NUP has
average slowdowns of 0.1%, 0.8%, and 3.5%. MoPAC-D with
NUP has average slowdowns of 0%, 0%, and 1.1%.

8.4 Results: Rate of Counter-Update
To better understand why NUP has reduced slowdowns, we analyze
the number of SRQ insertions per 100 ACTs. Table 12 shows the
average SRQ insertions (across all workloads) for TRHD of 1000,
500, and 250 with and without NUP. NUP nearly halves the number
of SRQ insertions compared toMoPAC-D, thus resulting in far fewer
ALERTs and thus lower slowdowns. This is expected, given most
rows receive only a few ACTs within tREFW.

Table 12: SRQ Insertions per 100 ACTs (lower is better)

TRHD MoPAC-D (Uniform) MoPAC-D (NUP)
1000 (p=1/16) 6.2 3.1 (0.5x)
500 (p=1/8) 12.5 6.3 (0.5x)
250 (p=1/4) 25.0 13.4 (0.54x)

8As a sanity check, we also computed MoPAC-D parameters using the Markov-Model
with uniform edges and found identical results as we got with the Binomial model.
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9 Related Work
Our paper focuses on reducing the performance bottleneck of the
emerging PRAC designs. In this section, we describe closely related
work in hardware-based Rowhammer mitigation.

9.1 Per Row Activation Counting
The concept of mitigating Rowhammer with a Per-Row Activation
Counter was first disclosed in a 2012 patent by Intel [9]. Panopti-
con [2] stores per-row counts inlined with the row. However, the
way it tracks the aggressor rowmeans it is still vulnerable to attacks
that can cause activations while the tracked row is in the per-bank
SRAM queue. Recent works, such as MOAT [31] and QPRAC [43],
propose secure mitigations using PRAC. In our paper, we use MOAT
as the default implementation for PRAC.

Chronos [4] proposes having a specialized subarray for counters,
so that the counter update and demand activations can happen con-
currently. Unfortunately, it requires complexity of heterogeneous
subarrays, and imposes significant restrictions on concurrent activa-
tions (for example, the tFAW time may need to be doubled, as each
demand activation now consumes the power of two activations).

9.2 Low-Cost In-DRAM Trackers
PRAC is a high-overhead tracker to enable secure in-DRAMRowham-
mer mitigation. Recently, multiple works, such as PrIDE [12] and
MINT [32], have explored secure mitigation with ultra-low stor-
age overhead in-DRAM trackers. These trackers were shown to
tolerate a TRHD of 1500 (MINT) and 1900 (PrIDE). The analysis of
both these trackers assumed that the DRAM chip can mitigate one
aggressor row at every REF. Unfortunately, mitigating an aggressor
row requires refreshes of 4 victim rows (Blast Radius of 2), requiring
about 240ns. Thus, Rowhammer mitigation itself would consume a
majority (240ns out of 410ns) of the time devoted to refresh. With
degrading DRAM reliability, DRAM vendors cannot devote such a
significant amount of time for Rowhammer mitigation, and typi-
cally, they mitigate one aggressor row every 4 to 8 refreshes [11].
Under such reduced time availability, the TRH tolerated by MINT
and PrIDE becomes quite high.

Table 13: Tolerated 𝑇𝑅𝐻 for MoPAC-D, MINT, and PrIDE as
time reserved for Rowhammermitigation (per REF) is varied.

Mitigation Time per REF MoPAC-D MINT PrIDE
4 victim rows (240ns) 250 1491 (6×) 1975 (7.9×)
2 victim rows (120ns) 500 2920 (5.8×) 3808 (7.6×)
1 victim row (60ns) 1000 5725 (5.7×) 7474 (7.5×)

Table 13 shows the threshold tolerated by MoPAC-D, MINT,
and PrIDE as the time reserved for mitigation per REF is varied
from 60ns (victim refresh or counter update of one row) to 240ns
(victim refresh or counter update of four rows). For a constant
rate of mitigation time, MoPAC-D can tolerate approximately 6x
lower threshold than MINT and 8x lower threshold than PrIDE.
Thus, the probabilistic update of MoPAC-D (for counter update) is
a more efficient use of the borrowed time than the aggressor row
mitigation (for refreshing four victim rows) of MINT and PrIDE.
Furthermore, given the move of the DRAM industry towards PRAC,
it has become more relevant to reduce the overheads of PRAC.

9.3 Principled In-DRAM Trackers
ProTRR [25] and Mithril [19] are principled in-DRAM trackers.
However, they incur high SRAM overheads, therefore, they are not
practical for adoption, especially at lower thresholds. The move
towards PRAC is partly due to the high cost of a principled tracker.

9.4 Other Exhaustive Trackers
CRA [17] and Hydra [33] keep a per-row counter table in ad-
dressable DRAM space and use a counter-cache or filters to reduce
memory-lookups for counts. START [37] uses LLC to dynamically
create per-row counter table. CRA, HYDRA, and START are all
MC-side trackers, and our focus is in-DRAM trackers.

9.5 Mitigating Actions and ECC
We use victim refresh for mitigation. Recent research has looked at
alternative mitigating actions, such as row-migration (e.g., RRS [35],
AQUA [39], SRS [44], SHADOW [42]) and rate-limits (e.g., Block-
hammer [45]). These mitigations incur high overheads at sub-1K
thresholds. Rubix [36] reduces the overhead of these mitigations.

9.6 Error Correction
SafeGuard [7], CSI-RH [15], PT-Guard [38] use codes to correct
Rowhammer failures. However, with such solutions, uncorrectable
failures can still cause data loss. TAROT [41] uses profiling to proac-
tively access rows that are vulnerable to uncorrectable Rowhammer
bitflips. However, Rowhammer behavior changes over time [29], so
imperfect profiling can cause errors.

10 Conclusion
The DRAM Rowhammer vulnerability is now more than a decade
old. During this time, DRAM devices have only become more prone
to Rowhammer. Prior industrial solutions, such as TRR (employed
in DDR4), were broken by simple patterns. Recently, JEDEC intro-
duced PRAC as a principled means to tolerate Rowhammer. While
PRAC is a strong solution that can scale to ultra-low thresholds, it
suffers from a critical shortcoming. To update the PRAC counters,
DRAM timings are extended, and this causes an average slowdown
of 10% for regular workloads even at current thresholds. The high
performance-overhead of PRAC represents a significant obstacle to
the widespread adoption of PRAC. Our design, MoPAC, solves this
problem by performing the counter-updates probabilistically, thus
incurring the overheads for only a small subset of the activations.
We introduce two designs: MoPAC-C (MC side) and MoPAC-D
(DRAM side). At 𝑇𝑅𝐻 of 500, MoPAC-C and MoPAC-D reduce the
slowdown of PRAC from 10% to 1.7% and 0.7%, respectively. We be-
lieve MoPAC can play a significant role in enabling the widespread
adoption of PRAC.
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Appendix-A: Tolerating Row-Press with MoPAC
Row-Press [23] is a new data-disturbance error that occurs when a
row is kept open for a long time. With Row-Press, the neighbors
of an opened row continue to (slowly) drain charge on the bit
lines. Row-Press reduces the number of activations required to
cause bit-flips compared to a standalone Rowhammer attack that
continuously activates the attacked row as fast as possible. In this
section, we propose extensions to MoPAC that can protect against
Row-Press with low overhead for 𝑇𝑅𝐻 of 1000 and 500.9

BoundingRow-Press: First, we bound the “damage" caused by one
round of Row-Press activation relative to one round of Rowhammer
activation. Suppose Rowhammer causes 1 unit of damage. Then,
per the detailed characterization of Luo et al. [23], keeping the row
open for 180ns causes a relative damage of about 1.5 units (device
𝑇𝑅𝐻 reduces by 1.5×). To tolerate Row-Press, we change the MoPAC
designs to operate considering that each activation causes 1.5 units
of damage (and proactively handle the uncommon cases of longer
open time). Thus, we must reduce 𝐴𝑇𝐻 by 1.5×.
Tolerating Row-Press with MoPAC-C: For MoPAC-C, we limit
the row open time to 180ns. The memory controller closes the row
after this time is reached (similar to the design proposed by Luo et
al. [23]). Table 14 shows the ATH* for such a design.

Table 14: ATH* modified for Row-Press

𝑇𝑅𝐻 𝑝 𝐴𝑇𝐻∗ (MoPAC-C) 𝐴𝑇𝐻∗ (MoPAC-D)
500 1/8 80 64
1000 1/16 160 144

ToleratingRow-PresswithMoPAC-D: ForMoPAC-D, the DRAM
measures the row-open time (𝑡𝑂𝑁 ) and, if the row is in the SRQ,
increments the SCtr of the row by ⌈𝑡𝑂𝑁 /180ns⌉.
Impact on Performance: Table 14 shows the adjusted 𝐴𝑇𝐻∗ for
MoPAC-C and MoPAC-D when protecting against Row-Press. Fig-
ure 18 shows the performance impact of MoPAC-C and MoPAC-D
with Row-Press protection. At a𝑇𝑅𝐻 of 1000, MoPAC-C andMoPAC-
D incur slowdowns of 0.9% and 0.4%, respectively. At 𝑇𝑅𝐻 of 500,
the average slowdowns are 1.8% and 6.8%, respectively. MoPAC-D
has a significant slowdown at TRHD of 500 compared to a TRHD
of 1000 as more rows are sampled, and the 𝑡𝑂𝑁 of rows in certain
workloads can be rather high.
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Figure 18: Slowdowns for MoPAC-C and MoPAC-D with and
without integrated Row-Press (RP) protection.

9At 𝑇𝑅𝐻 of 250 and lower, 𝐴𝑇𝐻 ∗ of Row-Press aware MoPAC becomes too low,
causing high slowdowns due to frequent ABO. In this regime, we recommend handling
Row-Press with circuit-level techniques, such as Row-Buffer Decoupling [23].

Appendix-B: Sensitivity to Number of Chips
For PRAC, each chip maintains a 2B counter per row. In a determin-
istic implementation of PRAC, such as MOAT [31], these counters
are synchronized, as each precharge will increment the counters
in all chips. In contrast, MoPAC performs updates probabilistically
so the counters for a row are not synchronized across different
chips. MoPAC-D uses independent structures (SRQ) within each
chip. Consequently, MoPAC’s overheads depend on the number of
chips in a DIMM, as more chips correspond to a higher probability
that one of the chips fills the SRQ and causes an ALERT.

In our study, we assume four chips per sub-channel, which coin-
cides with an x8 device. In this section, we evaluate MoPAC-D as
the number of chips is varied. Figure 19 shows the average slow-
down with MoPAC-D for 1, 2, 4, 8, and 16 chips and TRHD of 250,
500, and 1000. We observe insignificant variation for TRHD of 500
and 1000 as MoPAC-D’s sampling probability is low (1/8 and 1/16
respectively). In contrast, at TRHD of 250, the sampling probability
is high (1/4), and thus oversampling causes more slowdowns with
more chips, up to 4.2% at 16 chips compared to 3.5% with four chips.
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Figure 19: Slowdowns for MoPAC-D with varying TRHD and
chip counts. At TRHD of 250, slowdowns (from 1 to 16 chips,
respectively) are 2.7%, 3.1%, 3.5%, 3.9%, 4.2%.

Appendix-C: Impact of Proactive Row-Closure
The primary reason for the high slowdown of PRAC is the longer
precharge latency (tRP, increased from 14ns to 36ns), which is in the
critical path to serve a request with a row-buffer conflict. If the row
was closed proactively, well before this row buffer conflict, then
the impact of the longer precharge latency could be reduced. To
that end, we evaluate alternative row closure policies, specifically
a close-page policy and timeout open-page policies, which close
rows a set time (𝑡𝑂𝑁 ) after their last access.

Table 15 shows the slowdowns for MoPAC-D and PRAC for
different row closure policies. We note that the baseline performs
1.8% worse with a close-page policy versus open-page policy. PRAC
with a close-page policy has slowdown of 7.1% compared to closed-
page baseline. For a close-page policy, MoPAC-D’s slowdowns are
0.4%, 1.3%, and 4.9% for TRHDs of 1K, 500, and 250, respectively.

Table 15: Slowdowns with Proactive Row Closure

Policy PRAC MoPAC-D (TRHD below)
1000 500 250

Open-Page* 10% 0.1% 0.8% 3.5%
Close-Page 7.1% 0.4% 1.3% 4.9%
𝑡𝑂𝑁 = 100ns 7.5% 0.5% 1.0% 4.2%
𝑡𝑂𝑁 = 200ns 8.2% 0.3% 0.9% 3.8%
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11 Artifact Appendix
11.1 Abstract
Our artifact contains the simulator used to evaluate MoPAC and
any traces used in our evaluations. Details of how to build, run, and
generate data using artifact are listed in the artifact’s README.md.

11.2 Artifact check-list (meta-information)
• Program: sim
• Compilation: gcc, at least version 12
• Data set: SPEC2017, STREAM, and other traces used in the evalua-
tions.

• Hardware:Most evaluations can be done on a laptop, others require
a computing cluster.

• Execution: Python and bash scripts which automate the experi-
ments.

• Metrics: All evaluations use weighted-speedup.
• Experiments: All evaluations execute 100M instructions on a
cycle-level simulator.

• Howmuch disk space required (approximately)?: At most 5GB
• How much time is needed to prepare workflow (approxi-
mately)?: At most 30 minutes

• How much time is needed to complete experiments (approxi-
mately)?: At most one day

• Publicly available?: Yes
• Code licenses (if publicly available)?:MIT
• Data licenses (if publicly available)?: MIT
• Workflow automation framework used?: CMake, version 3.20.2
or higher

• Archived (provide DOI)?: 10.5281/zenodo.15103420

11.3 Description
11.3.1 How to access. Available on Zenodo here.

11.3.2 Hardware dependencies. Only a laptop is needed, but a
server or cluster will allow evaluations to complete faster.

11.3.3 Software dependencies. Our code compiles with gcc-12
through gcc-15. It has not been tested with clang. Furthermore,
our codebase uses the CMake build tool (version 3.20.2 or higher)
to automate compilation.

Otherwise, our artifact requires ZLIB as a dependency, which
can be installed using package managers like apt or brew if not
already installed on the system.

Our Python version is 3.10, but it is likely slightly older Python
versions are sufficient.

11.3.4 Data sets. We have provided all traces used in our evalua-
tions in the TRACES folder.

11.4 Installation
For a more detailed overview of evaluation, please see README.md.

11.4.1 Building Executables. Run the following commands to build
the simulator:

$ mkdir Release && cd Release

$ cmake .. -DCMAKE_BUILD_TYPE=Release

$ make -j4

11.4.2 Generating Configurations. Run the following commands
to generate the configuration files used in our evaluations:

$ python config_dramsim3/prac/make_ini.py

11.5 Experiment workflow
The commands used to execute all evaluations can be generated by
using the scripts/prac/run.py script (see README.md for more
details). These commands can then be used by GNU parallel or
SLURM, for example.

After completing all evaluations, the stats for each configuration
can be aggregated by using the scripts/prac/stats.py scripts.
This will create CSV files for each configuration. Each CSV file will
contain information such as weighted speedup, MPKI, and other
useful stats. Furthermore, these files can be used to create the plots
generated by the plots.ipynb notebook, which can be opened
using Jupyter Notebook or Jupyter Lab. The specific figures that
are generated by the notebook are: Figure 9, Figure 11, Figure 12,
Figure 13, Figure 15.

11.6 Evaluation and expected results
Generated plots and data should roughly match what is reported
in the main text, with some possible variance due to randomness.

11.7 Experiment customization
The implementation of MoPAC is entirely contained within DRAM-
sim3. If an alternative simulator frontend (i.e., Gem5, Champsim)
is desired, then the existing DRAMsim3 code can be used as is.

11.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae
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