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Abstract

Exclusive last-level caches (LLCs) reduce memory ac-

cesses by effectively utilizing cache capacity. However, they

require excessive on-chip bandwidth to support frequent in-

sertions of cache lines on eviction from upper-level caches.

Non-inclusive caches, on the other hand, have the advan-

tage of using the on-chip bandwidth more effectively but

suffer from a higher miss rate. Traditionally, the decision

to use the cache as exclusive or non-inclusive is made at de-

sign time. However, the best option for a cache organization

depends on application characteristics, such as working set

size and the amount of traffic consumed by LLC insertions.

This paper proposes FLEXclusion, a design that dynam-

ically selects between exclusion and non-inclusion depend-

ing on workload behavior. With FLEXclusion, the cache

behaves like an exclusive cache when the application bene-

fits from extra cache capacity, and it acts as a non-inclusive

cache when additional cache capacity is not useful, so that

it can reduce on-chip bandwidth. FLEXclusion leverages

the observation that both non-inclusion and exclusion rely

on similar hardware support, so our proposal can be im-

plemented with negligible hardware changes. Our evalua-

tions show that a FLEXclusive cache reduces the on-chip

LLC insertion traffic by 72.6% compared to an exclusive

design and improves performance by 5.9% compared to a

non-inclusive design.

1.. Introduction

As modern processors step from the multi-core era to
the many-core era, the design of memory hierarchies has
become even more important. The capacity of the last-level
cache (LLC) primarily dictates the amount of the working
set that can be stored on-chip. The LLC capacity is unlikely
to grow at the same rate as the number of cores on-chip.
This means that the LLC capacity per core is not expected
to increase for future processor generations; instead, the ra-
tio of the non-LLCs to the LLC is likely to become larger as
we go towards many-core on the same die. Figure 1 shows
the ratio of the capacity of the on-chip non-LLCs to the to-
tal capacity of the LLC for Intel processors over the past 10

years. A lower ratio means that the LLC capacity is much
larger than the non-LLC capacity. For example, a ratio of
0.1 indicates that the LLC is 10 times larger than the non-
LLCs. Until 2006, this ratio was steadily decreasing as pro-
cessor designs focused on increasing LLC capacity in the
single-core era. However, with the introduction of multi-
core processors, the ratio has not scaled down further since
2006. Instead, the ratio has significantly increased in recent
micro-architectures that adopt the L3 cache as the LLC. For
example, AMD’s recent processor, Phenom II, has a very
aggressive non-LLC-to-LLC ratio of 0.5, a design in which
a 6 MB LLC is shared among six cores that each have a
private 512KB L2 cache core [1]. In this case, an inclusive
design for the L3 cache would end up consuming half of
the LLC capacity for simply replicating the blocks that are
already resident in the L2 cache. Therefore, an exclusive
cache becomes an attractive design choice to increase effec-
tive cache capacity for such designs.

Inclusive LLCs have the advantage of simplifying the
cache coherence protocol [3] by avoiding snoop traffic for
inner-level caches. However, inclusion requires that the
same cache block be duplicated in multiple cache levels,
which reduces the effective LLC size, thus increasing the
number of off-chip accesses. On the other hand, exclu-
sive LLCs, which are preferred by AMD and VIA proces-
sors [1, 20], fully utilize the cache capacity by avoiding du-
plication of cache blocks and allowing the snoop traffic to
go to the inner level caches. Unfortunately, exclusive caches
increase on-chip bandwidth requirements significantly due
to the need to insert clean victims from the non-LLCs to the
LLC [8, 24].

In fact, there is no cache configuration (inclusion, exclu-
sion, or non-inclusion) that works best for all workloads.
Each design has its own pros and cons, depending on the
workload and the effective ratio of the non-LLCs to the LLC
size. This motivates us to investigate dynamic designs that
can configure the cache inclusion property on-the-fly de-
pending on the workload requirements. To that end, we pro-
pose a flexible inclusion scheme, called FLEXclusion, that
adaptively configures the LLC inclusion property depend-
ing on the cache capacity requirement and on-chip traffic
consumption. With FLEXclusion, the LLC acts like an ex-
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Figure 1. Ratio of cache capacity of the nonLLCs to the LLC for Intel processors over the past 10 years.

clusive cache for workloads that benefit from more cache
capacity and behaves like a non-inclusive cache when extra
cache capacity is not useful, thereby reducing the on-chip
bandwidth and power consumption. The idea of FLEXclu-
sion stems from the key observation that both non-inclusive
and exclusive caches rely on similar hardware. Hence,
FLEXclusion can easily switch the cache inclusion property
between non-inclusion and exclusion without too much ad-
ditional hardware. FLEXclusion only requires (1) a mech-
anism to detect workload behavior (fortunately such mech-
anism is already used in modern cache designs [9, 10, 16]),
and (2) a few configuration registers and gates, which do
not alter any address or data path in the cache hierarchy.

Compared to an exclusive cache, FLEXclusion reduces
power consumed in the on-chip interconnect and cache in-
sertions. And, compared to a non-inclusive cache, FLEX-
clusion improves performance by freeing up cache space
when the workload needs cache capacity. Our evaluations
show that FLEXclusion effectively reduces on-chip LLC
insertion traffic over exclusive caches by 72.6% on aver-
age with only a 1.6% performance degradation. This helps
FLEXclusion reduce the on-chip network power consump-
tion by 20.5%. On the other hand, compared to non-
inclusion, FLEXclusion improves performance by 5.9%.
Thus, the dynamic selection of FLEXclusion between ex-
clusion and non-inclusion can be used either to save power
or to improve performance.

2.. Background and Motivation

Based on the inclusion property, multi-level cache hier-
archies can be classified into three designs: inclusive, non-

inclusive, and exclusive. A cache is referred to as inclusive

when a cache organization forces the cache to always hold
cache blocks that are residing in the upper-level(s). An ex-
clusive cache is designed not to cache any blocks that are
already present in the upper-level cache(s). A non-inclusive
cache is not forced by either inclusion or exclusion (i.e., it
may contain the upper-level cache blocks).

In a three-level cache hierarchy, lower-level caches (L2
and L3) may have different inclusion policies. For example,
L3 can be inclusive (i.e., cache blocks in L1 or L2 must
exist in L3), while L2 is non-inclusive (i.e., cache blocks
in L1 may exist in L2) as in Intel processors [6, 7]. In this
paper, we focus on the inclusion property only between L2

and L3 caches. The next section describes the differences in
data flows and relative on-chip traffic for the three designs.

2.1.. Onchip/Offchip Traffic in Multilevel Caches

Figure 2 illustrates the insertion/eviction flows of mem-
ory blocks for the three cache designs. In each design,
the operation flows triggered by an L3 access are different,
which results in the difference in traffic among the three
cache hierarchies. We assume that the L2 cache is non-
inclusive and the L3 caches follow typical designs for each
inclusion property. Without loss of generality, we omit the
L1 cache in the figure in order to focus on the flows of the
L2 and L3 caches. Before discussing on-chip/off-chip traf-
fic, note that the insertions of (·-») consume on-chip band-
width, while the others (¶,¼) consume off-chip bandwidth.

Inclusive/Non-Inclusive Caches: First, on an L3 miss,
the requested block is brought into both the L2 (º) and L3
(·) caches. Thus, the traffic produced by the L3 miss is one
on-chip (·,º) and one off-chip (¶) transfers. On an L3 hit,
the line is brought into L2 while the line still remains in the
L3 cache, which generates one on-chip transfer (»).

Whenever there is an L3 access (hit or miss), one vic-
tim block should be evicted from the L2 cache (¸ or ¹).
The data flow of this eviction is the same in the inclusive
and non-inclusive caches as they silently drop the clean vic-
tims.1 Dirty victims from L2 are inserted into the position
where the same block resides. In the non-inclusive design,
however, the block may not exist in the L3 cache. In this
case, a victim is selected in L3, so an off-chip transfer (¼)
may occur depending on the dirtiness of the L3 victim. In
general, however, write-back traffic to memory results from
traffic (·) and %dirtyL3 as in the inclusive caches.

From the perspective of block insertions/evictions, in-
clusive and non-inclusive caches have identical flows,
and the difference in design only results from the back-

invalidation2, which invalidates the same line in the upper-
level caches (L1 and L2) on L3 evictions to enforce the in-
clusion property (½). In summary, for both designs, the
on-chip (Ton-chip) and the off-chip traffic (Toff-chip) resulting

1We describe the most common implementation of non-inclusion that
silently drops clean victims from L2 to L3. Alternative designs are possible
but are outside the scope of our study.

2While there are several methods to enforce inclusion, the back invali-
dation method is the most popular one.
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Figure 2. Block insertion/eviction flows for three different multilevel cache hierarchies.

from L3 accesses can be expressed as follows:

Ton-chip = T→L2 (º,») + TL2→L3 (¹)

= #missL3 (º) + #hitL3 (») + #missL2 × %dirtyL2 (¹)

= #missL2 (º,») + #missL2 × %dirtyL2 (¹) (1)

Toff-chip = TMEM→ (¶) + TL3→MEM (¼)

= #missL3 (¶) + #missL3 × %dirtyL3 (¼) (2)

Exclusive Caches: On an L3 miss, the requested block
is inserted only into the L2 cache (º), unlike in the other
designs. However, note that one L3 miss generates the same
amount of on/off-chip traffic as that in the inclusive/non-
inclusive caches (¶,º). On an L3 hit, the hitting line is
inserted into the L2 cache while invalidating the line in L3.
Thus, the traffic resulting from an L3 hit is the same as that
in inclusive/non-inclusive caches.

Similar to the inclusive/non-inclusive caches, an L3 ac-
cess (hit or miss) leads to an L2 eviction. However, in exclu-
sive caches, the victim line is always installed into the L3
cache regardless of its dirty status (¸,¹). Note that clean
victims (¸) in inclusive/non-inclusive caches are always
dropped silently without the insertion into L3 caches. The
victims (¸,¹) from L2 cause L3 evictions unless they are
inserted into the position invalidated due to L3 hits. Note
that, depending on cache designs, the L2 victim resulting
from an L3 hit may also not be installed into the invalidated
position (i.e., the hitting line) in L3. In summary, the traffic
in the exclusive cache can be represented as follows:

Ton-chip = T→L2 (º,») + TL2→L3 (¸,¹)

= #missL3 (º) + #hitL3 (») + (#hitL3 + #missL3) (¸,¹)

= #missL2 (º,») + #missL2 (¸,¹) (3)

Toff-chip = TMEM→ (¶) + TL3→MEM (¼)

= #missL3 (¶) + #missL2 × %evictL3 × %dirtyL3 (¼)
(4)

Traffic Comparison of Non-Inclusion and Exclusion:
Using the above equations, the difference in traffic between
the non-inclusive and exclusive designs can be expressed as

Tdiff = Ton-chip diff + Toff-chip diff

= #missL2 − #missL2 × %dirtyL2 + Toff-chip diff

= #missL2 × %cleanL2 + (Toff-chip EX − Toff-chip NICL). (5)

For on-chip traffic, note that #missL2 is not affected by the
L3 cache designs. Instead, it is a function of the parameters
of the L2 cache and program behavior. Thus, the L2 inser-
tion traffic (º,») is the same between Eq. (1) and Eq. (3),
and they cancel out. As a result, the difference in traffic
only comes from the on-chip L3 insertion traffic, which is
(¸,¹). We can also expect that the on-chip L3 insertion
traffic remains the same, in both designs, even if the L3 size
is changed since it is determined by #missL2 and %dirtyL2,
which are independent of the L3 configurations.

We will not elaborate the difference in off-chip traffic
as we focus on on-chip traffic.3 In general, Toff-chip EX is
smaller than Toff-chip NICL since the L3 miss ratio in exclusive
caches is lower than that in non-inclusive caches. However,
if running workloads fit in the L3 cache or have very large
memory footprints, the difference in miss ratio could be in-
significant. In this case, the difference in off-chip traffic
between non-inclusive and exclusive designs is negligible.

2.2.. Need for Dynamic Mechanism

Exclusive LLCs usually perform better than non-
inclusive LLCs for the same cache size. Figure 3 shows that
this is mainly due to the increase in effective cache capacity.
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Figure 3. Performance of noninclusive and exclusive LLCs

varying the LLC size for SPEC2K6 benchmarks.

With a 1:2 ratio for the L2 and L3 caches, the increase
in cache size is 50% over the non-inclusive design, which
results in a performance difference of 9.4% between the
two designs. However, as the ratio becomes smaller (1:4
and 1:8), the performance gain over non-inclusive LLCs

3The difference in off-chip transfers between non-inclusive and exclu-
sive caches is much smaller than the difference in on-chip transfers.
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becomes insignificant, thereby making non-inclusive LLCs
perform comparably to exclusive LLCs.

On the other hand, the LLC insertion traffic in the ex-
clusive hierarchy is typically much higher than in the non-
inclusive one, and the traffic remains the same even though
the L3 size is increased since it is determined by the L2
cache size for a given application (Eq. (3)). This higher
amount of traffic can only be justified when there is a no-
ticeable performance difference between the exclusive and
non-inclusive LLCs. To provide a concrete example, we
measure performance and L3 insertions per kilo instruc-
tions (L3 IPKI) of a dense matrix multiplication application
whose working set size is 1MB (L2 cache size is 256KB).
Figure 4 shows that if the L3 size is 512KB, the exclusive
L3 performs 1.45 times better than the same size of the non-
inclusive L3 cache. However, if the L3 size is greater than
1MB, the performance difference becomes smaller. Note
that the L3 IPKI remains the same across all configura-
tions. Thus, for this workload, considering the bandwidth
consumption as well as performance, the 1MB and 2MB
L3 should be non-inclusive, while the 512KB L3 should be
exclusive. This implies that the best cache configuration de-
pends on workload behavior, and a static policy is unable to
adapt across workload changes.
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Figure 4. For dense matrix multiply, performance and L3 IPKI

difference as the LLC size is varied for an exclusive design.

3.. FLEXclusion

To avoid the disadvantages of a static cache organiza-
tion, we propose FLexible EXclusion (FLEXclusion). A
cache that implements FLEXclusion is called a FLEXclu-
sive cache. A FLEXclusive cache operates in one of two
modes: exclusive mode or non-inclusive mode, which are
determined at run-time using traffic monitoring and de-
cision mechanisms. This section describes the proposed
FLEXclusion scheme.

3.1.. Operation of FLEXclusive cache

Figure 5 shows an overview of the FLEXclusive cache.
The data flow is composed of both non-inclusion and ex-
clusion data paths, and two additional logic/registers con-
trol the data flow based on operating mode: (1) EXCL-REG:
one-bit register in the L2 cache controller to decide whether
clean victims are inserted into L3 or silently dropped, (2)
NICL-GATE: logic that controls the data flow for incoming
blocks from DRAM to L3.
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Figure 5. Hardware mechanisms and data flows in the FLEXclu

sive cache (shaded boxes indicate additional logic).

Exclusive Mode: Policy decision logic (PDL) (Sec-
tion 3.2.2) sends the signal 1 (exclusion) to (1) NICL-
GATE: in order not to insert incoming blocks from the
DRAM to the L3 cache, (2) L3 insertion path: to invali-
date the hitting lines in L3, and (3) EXCL-REG: to insert
L2 clean victims to the L3 cache. The exclusive mode
in FLEXclusion behaves the same as in typical exclusive
caches except for the L3 insertion of L2 victims, which is
performed in a similar way to write-back updates in non-
inclusive caches.4

Non-Inclusive Mode: As opposed to the exclusive de-
sign, the PDL resets the EXCL-REG to prevent clean vic-
tim insertions into the L3 cache. Also, all incoming blocks
from the DRAM are inserted into both L2 and L3 caches.
Although there could be multiple design choices regarding
non-inclusive caches, the non-inclusive mode in the FLEX-
clusive cache follows the typical non-inclusive cache behav-
ior described in Section 2. The characteristics of the operat-
ing modes are summarized in Table 1.

3.2.. Operating Mode Decision

3.2.1. Collecting Cache Information The information
collecting logic (ICL) in Figure 6 gathers information from
the L3 cache based on the set dueling method [16] but is
extended to check cache misses as well as insertion traffic.
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Figure 6. Highlevel block diagram for mode selection.

In our evaluations, we set 16 dedicated non-inclusive sets
and 16 dedicated exclusive sets per 1024 L3 sets (the num-
ber of required sampling sets is well discussed in [16]),

4Note that this does not incur additional costs since a tag lookup needs
to be performed in typical exclusive caches as well.
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Operating Mode Clean Victims (L2) Line Fill (DRAM) EXCL-REG NICL-GATE (output) Traffic (Ton-chip)

Non-inclusive mode Silent drop Both L2 and L3 Set to false (0) True (Requested data) Eq. (1)

Exclusive mode Insert Only L2 Set to true (1) False (None) Eq. (3)

Table 1. Characteristics of different operating modes in FLEXclusion.

and the other sets follow the winning policy. Each dedi-
cated exclusive/non-inclusive set follows its exclusion/non-
inclusion behaviors. For example, if there is a hit on one of
the exclusive dedicated sets, the hitting line is invalidated,
while if the hit is on one of the non-inclusive sets, the hit-
ting line remains in the L3 cache. For the dedicated sets, the
L3 insertion traffic and cache misses are monitored and then
are fed to the policy decision logic periodically. We spread
the dedicated sets across the L3 cache sets to improve the
effectiveness of set sampling.

3.2.2. Setting Operating Mode Policy decision logic
(PDL) decides which mode should be triggered for the
FLEXclusive cache using the information from ICL. If the
estimated performance of the exclusive mode is higher than
that of the non-inclusive mode, PDL sends a signal to the
L3 cache to run it as the exclusive mode. Otherwise, the
FLEXclusive cache is configured as the non-inclusive mode.
We used two metrics to determine the operating region of
FLEXclusion: cache misses (performance) and L3 inser-
tions per kilo instructions (traffic). Figure 7 illustrates the
operating regions including extensions of FLEXclusion that
will be explained in the following section.

L3 IPKI

1.0 Perfth

Insertionth

Non-Inclusive Mode

Exclusive ModeNon-Inclusive Mode 

(Aggressive)

Performance Relative 

to Non-Inclusion (Cache Miss)

Exclusive Mode 

(Bypass)

Figure 7. Operating regions for FLEXclusive caches.

FLEXclusion does not require any special actions on a
transition from one mode to another. For example, if L3
is switched to non-inclusive mode, L2 clean victims are
dropped even though they might not be in L3. However,
this does not cause any correctness problems. On a switch
to exclusive mode, the victims from L2 may already exist
in the L3 cache. However, FLEXclusion does not cause any
duplicate copies since the L2 victims are inserted into the
position where the same block resides in such cases.

3.3.. Extensions of the FLEXclusive Cache

3.3.1. Per-core Inclusion Policy (PER-CORE) When
multiple applications are running on different cores, one
application may undesirably determine the decision for an
L3 organization. To address this problem, the FLEXclusive
cache can be configured with a per-core policy. Now, it has

distinct dedicated sets for different cores to detect applica-
tion characteristics. Every L2 block also needs core identi-
fication information, and fortunately, it is already provided
in most of the current processors to indicate cache affinity.

3.3.2. Aggressive Non-Inclusive Mode (AGG) In the
non-inclusive cache, a cache block can exist only in the L2
cache, but not in the L3 cache. In the FLEXclusive cache,
since the L3 cache can be switched between non-inclusive
mode and exclusive mode, this situation can occur more of-
ten than other typical non-inclusive caches. In this exten-
sion, when a clean L2 victim is evicted, the L3 cache is
checked to see if it contains the evicted line. If not, the
victim will be installed into the L3 cache instead of being
dropped, which effectively increases the L3 hit ratio at the
cost of increases in insertion traffic and address bandwidth.

3.3.3. Operating with Other Cache Techniques (BY-

PASS) FLEXclusion is orthogonal to cache replacement,
insertion, and bypass algorithms; thus, they can be syn-
ergistically applied together. One of the interesting com-
binations could be the integration with bypass techniques
since the FLEXclusive cache requires the same amount of
bandwidth as that of exclusive caches when it runs as the
exclusive mode. Thus, we can employ bypass algorithms
on FLEXclusion’s exclusive mode to further reduce the on-
chip bandwidth consumption. In Section 5.5, we show that
the FLEXclusive cache seamlessly operates with one of the
state-of-the-art bypass algorithms.

3.4.. Hardware Overhead and Design Changes

FLEXclusive cache requires negligible hardware over-
head and design changes, as shown in Figure 5. Compared
to the baseline caches (both exclusive and non-inclusive
caches), we need an additional four registers to record
performance and IPKI information for each mode, one
comparator, set dueling support5, and a few configura-
tion gates/registers to control the insertion/eviction flows of
memory blocks. All the data flows required to implement
the FLEXclusive cache are already necessary for both tradi-
tional exclusive and non-inclusive caches; thus, the FLEX-
clusive cache simply leverages these pre-existing data paths.

3.5.. Impact on Cache Coherence

Both non-inclusive and exclusive caches do not guaran-
tee the inclusion property; therefore they need to either have
a coherence directory or support snooping of inner level
caches. As exclusive and non-inclusive caches have simi-
lar flow of coherence traffic, we do not need to modify the
coherence network in order to support FLEXclusion.

5Note that the overhead to support set dueling is negligible when every
32nd set is selected for set sampling. We only need one 5-input NOR gate.
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4.. Experimental Methodology

Simulation Infrastructure: We use MacSim [2], an x86
simulator, for our evaluations. Table 2 shows our baseline
processor configurations. We keep the L1 and L2 cache
parameters consistent for this study while varying the inclu-
sion property and the size of the L3 cache.

Core 1-4 cores, 4.0 GHz out-of-order, 256 ROB
4 issue width, gshare branch predictor

L1 Cache 32KB I-Cache + 32KB D-Cache (3-cycle), 64B line size

L2 Cache 8-way 512KB (8-cycle), 64B line size

L3 Cache 16-way shared 4MB (4 tiles, 25-cycle), 64B line size

Interconnect Ring (cores, L3, and a memory controller), each hop takes one cycle

DRAM DDR3-1333, FR-FCFS, 9-9-9 (CL-tRCD-tRP)

Table 2. Baseline processor configuration.

Benchmarks: We use the SPEC CPU2006 benchmarks
and sample 200M instructions using SimPoint [17]. Then,
based on the misses per kilo instructions (MPKI) on the
baseline processor configuration, the benchmarks are cate-
gorized into three different groups. Group A represents the
benchmarks whose working set sizes are greater than the L2
cache but have benefits from the L3. Group B consists of the
benchmarks whose working set sizes are much greater than
the L3. Finally, the benchmarks in Group C either are non-
memory intensive or have small working set sizes. Table 3
summarizes the classification of the benchmarks.

Group Benchmarks (SPEC2006)

A: LLC Beneficial (6) bzip2, gcc, hmmer, h264, xalancbmk
calculix

B: LLC Less-beneficial (14) mcf, libquantum, omnetpp, astar, bwaves
milc, zeusmp, cactusADM, leslie3d
soplex, gemsFDTD, lbm, wrf, sphinx3

C: Non-memory Intensive (9) perlbench, gobmk, sjeng, gamess
gromacs, namd, dealII, povray, tonto

Table 3. Benchmark classification.

Based on the classification, we select six benchmarks
from Group A and seven benchmarks from Group B for
the single-threaded experiments. The benchmarks in Group
C neither cause L3 insertion traffic nor experience perfor-
mance differences between non-inclusive and exclusive de-
signs since they fit into the L2 cache; therefore, we exclude
Group C. For the multi-programmed workload study, we se-
lect benchmarks from Groups A and B and mix the bench-
marks. For the experiment, if a faster thread finishes its
entire instructions, the thread continues to execute from the
beginning to keep competing for cache resources, which is
similar to the methodology used in [5,9,23]. Tables 4 and 5
summarize the benchmarks used for single-threaded and
multi-programmed workloads in this study, respectively.

Energy Model: We use Orion [22] to discuss network
power consumption in Section 5.6. We model an on-chip
network with four virtual channels (VCs) per physical chan-
nel, where each VC has 5 FIFO buffers. The router oper-
ates with 2.0GHz clock frequency at 1.2V in a 45nm tech-
nology. The link width is 64b, so that a data message is
decomposed into 9 flits (1 for address and 8 for data), while
an address packet is composed of 1 flit. The link length is

MPKI MPKI

Group A L2 L3 Group B L2 L3

bzip2 4.13 0.77 mcf 65.94 59.13

gcc 4.64 1.50 omnetpp 19.05 14.15

hmmer 3.28 0.19 bwaves 23.74 23.53

h264 1.52 0.19 soplex 35.16 23.39

xalancbmk 2.08 1.56 leslie3d 32.23 29.76

calculix 2.21 1.79 wrf 25.80 22.49

sphinx3 19.61 16.71

Table 4. Singlethreaded workloads and their MPKI values.

Type Descriptions

2-MIX-S combine the same two benchmarks in Groups A and B

2-MIX-A combine all possible two benchmarks in Groups A and B

4-MIX-S combine the same four benchmarks in Groups A and B

Table 5. Benchmarks for multiprogrammed workloads.

Buffers 11.8 (pJ) Crossbar 9.5 (pJ) Arbiters 1.8 (pJ)

Table 6. Router energy breakdown per 64bit flit.

5mm. With these parameters, dynamic and leakage power
are calculated from Orion. Table 6 summarizes the model-
ing parameters in each router component for a flit.

5.. Results and Analysis

FLEXclusion aims to be either exclusive or non-
inclusive to get either the performance benefit in exclu-
sion or the bandwidth savings in non-inclusion at run-time.
Hence, we compare performance with exclusive caches and
bandwidth consumption with non-inclusive caches when
discussing the results of FLEXclusion (Sections 5.2 to 5.4).
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Figure 8. Performance and L3 IPKI difference between exclusion

and noninclusion (512KB L2, (a) 1MB L3, (b) 4MB L3).
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Figure 9. Performance of noninclusion and FLEXclusion normalized to exclusion for the singlethreaded workloads.
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Figure 10. L3 insertions of exclusion and FLEXclusion normalized to noninclusion for the singlethreaded workloads.

5.1.. Exclusive Caches vs. Noninclusive Caches

First, we study the potential benefits of the FLEXclusive
cache. Figure 8 shows the performance and L3 insertions
per kilo instructions (L3 IPKI) between non-inclusive and
exclusive L3 caches for 1MB and 4MB cache sizes. In both
figures, the x-axis represents the performance of the exclu-
sive L3 cache normalized to the non-inclusive L3 cache, and
the y-axis shows the L3 IPKI difference between the non-
inclusive and exclusive caches.

In Figure 8(a), with the 1MB L3 size, benchmarks such
as hmmer (1.25), gcc (1.13), bzip2 (1.13), and h264 (1.13)
show more than a 10% performance improvement over the
non-inclusive cache. However, the other benchmarks actu-
ally do not benefit much from the exclusive cache even with
a 1:2 ratio of the L2 and the L3 cache size while gener-
ating much more traffic than the non-inclusive cache. For
example, bwaves does not benefit at all but generates 23.01
more L3 IPKI traffic than on the non-inclusive cache, so run-
ning the workload on the exclusive cache is not a good idea.
This benchmark is a perfect streaming application whose
L3 hit ratio is zero and 97% of L2 victim lines are clean
(large memory footprint as well). Thus, from Eq. (5), we
can infer that the traffic difference between exclusion and
non-inclusion is significant for this workload.

Figure 8(b) shows that, with the 4MB L3 cache, more
benchmarks favor the non-inclusive cache since the max-
imum capacity that can benefit more from the exclusive
cache is only 12.5%. Now, the benchmarks that previously
favored the exclusive cache such as hmmer (0.997), gcc

(1.006), and bzip2 (1.001) have lost their advantage to run
with the exclusive cache. Thus, these benchmarks actually
consume more bandwidth compared to when they run with
non-inclusive caches without achieving better performance.

5.2.. FLEXclusion on Singlethreaded Workloads

Figure 9 shows the performance of non-inclusion and
FLEXclusion normalized to exclusion for L3 sizes from
1MB to 4MB. For each benchmark, there are three groups of
bars, each of which corresponds to a different L3 cache size
(1, 2, and 4MB). The left and right bars in each group show
the performance of non-inclusion and FLEXclusion, respec-
tively. Also, the bar labeled AVG. represents the geometric
mean of normalized performance over all 13 benchmarks.

For benchmarks such as bzip2, gcc, hmmer, and h264,
the non-inclusive cache has more than a 10% performance
degradation compared to the exclusive cache in the 1MB
cache size. In fact, hmmer shows a 20.1% performance
degradation in the non-inclusive cache, but we can see that
the FLEXclusive cache reduces the degradation to 1% com-
pared to the exclusive cache, which leads to a 5.9% perfor-
mance improvement over the non-inclusive cache on aver-
age. This performance loss in the non-inclusive cache van-
ishes as the cache size increases. However, the FLEXclu-
sive cache always shows performance similar to that of the
exclusive cache for all the different cache sizes. On aver-
age, the non-inclusive cache loses 6.3%, 3.0%, and 2.6%
over the exclusive cache for the 1MB, 2MB, and 4MB sizes,
while the FLEXclusive cache only loses 1.0%, 1.2%, and
1.6%, respectively.

Figure 10 shows the number of L3 insertions normal-
ized to the non-inclusive L3 cache. The result shows that
the exclusive L3 insertion is significantly higher, up to 34
times, than that in the non-inclusive L3 cache for most of
the benchmarks. Interestingly, hmmer shows the L3 inser-
tion traffic that is closest to that in the non-inclusive cache
in all cases. This is because most of the L2 victim lines
in the benchmark are dirty, so the victims are written back
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Figure 11. Percentage of the noninclusive and exclusive mode used in FLEXclusion.

to the L3 cache in both non-inclusive and exclusive caches.
In contrast, in bwaves, most of the L2 victims are clean as
described in the previous section, which leads to 95.6%,
80.2%, and 96.3% reductions in the insertion traffic com-
pared to the exclusive cache for the 1MB, 2MB, and 4MB
cache sizes, respectively.

Figure 10 also shows that the FLEXclusive cache effi-
ciently reduces the L3 insertion traffic. For example, in
bzip2, in the 1MB cache, the performance difference is high,
so the FLEXclusive cache pursues the performance by con-
figuring the LLC as the exclusive mode at the cost of L3
insertion traffic. On the other hand, when the cache size is
2MB or 4MB, the performance of non-inclusion is compara-
ble to that of exclusion. Thus, FLEXclusion configures the
LLC as the non-inclusive mode to reduce the traffic. On av-
erage, FLEXclusion leads to 57.8% (1MB), 50.6% (2MB)
and 72.6% (4MB) reductions in L3 insertion traffic.

5.3.. Adaptiveness on Effective Cache Size

FLEXclusion adaptively configures the L3 inclusion
property, depending not only on the running workload, but
also on the effective cache size that the individual work-
load experiences. For this purpose, we vary the number
of threads from one to four on quad-core CMPs with the
512KB L2 and 4MB shared L3 caches. To observe the ef-
fective cache sizes only, we intentionally allocate the same
benchmarks (2-MIX-S, 4-MIX-S).

As shown in Figure 11(a), when only one thread is en-
joying the entire L3 cache, the non-inclusive mode is pre-
ferred for the L3 inclusion on most workloads. Only for a
few benchmarks, such as calculix and sphinx3, does FLEX-
clusion set the L3 cache to the exclusive mode for some
periods. However, as the number of competing threads in-
creases, the L3 cache is configured as the exclusive mode
for more workloads in order to increase the effective cache
size for each individual thread, at the cost of on-chip traffic
(Figure 11(b)). In fact, as shown in Figure 11(c), when all
four cores compete for the shared L3 cache, seven out of
13 benchmarks need the L3 cache to behave as an exclusive
cache for most of the running period.

5.4.. FLEXclusion on Multiprogrammed Work
loads

In this section we evaluate 91 2-MIX-A multi-
programmed workloads. Figure 12 shows the performance

of non-inclusion and FLEXclusion relative to exclusion and
the L3 IPKI values when 2-CPU mixed workloads are exe-
cuted on the 4MB L3 cache. In each figure, the x-axis rep-
resents the mixed workloads (2-MIX-A) sorted by the value
in exclusion L3 IPKI ascending order.
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Figure 12. Normalized performance and L3 insertions per kilo

instructions (L3 IPKI) on 2CPU workloads (2MIXA).

The result shows that FLEXclusion recovers huge per-
formance drops occurring in non-inclusion. Many work-
loads show more than 10% performance degradations in
non-inclusion, but almost all FLEXclusion shows within
a 5% range (Figure 12(a)). Furthermore, it reduces band-
width consumption over exclusion when the performance
difference is insignificant, thereby overcoming the disad-
vantages of static non-inclusive/exclusive LLCs. Exclusion
shows high L3 IPKI in many workloads, but for the ma-
jority of the workloads FLEXclusion shows significantly
low L3 IPKI and often similar to that in non-inclusion (Fig-
ure 12(b)). On average, FLEXclusion reduces L3 insertion
traffic by 55.1% compared to the exclusive cache (with the
cost of only 3.38% performance degradation over the exclu-
sive cache) while achieving 4.78% more performance over
the non-inclusive cache.
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5.5.. Extensions on FLEXclusion

All experiments in this section use the same experimen-
tal configuration (4MB L3 cache, 91 2-MIX-A) as in Sec-
tion 5.4, but the workloads are sorted based on the normal-
ized L3 insertions of each extension (BYPASS and AGG).

5.5.1. Bypass Algorithms with FLEXclusion (BYPASS)

To show that other cache optimization techniques can be
safely applied to the FLEXclusive cache, we implemented
the static version of the bypass algorithm in [5] on top of the
FLEXclusive cache. The basic idea of the bypass algorithm
is to use the cache block’s usage information (from L2) and
trip counts (between L2 and L3) to find dead and live blocks
for the bypass decision, which is realized with a small num-
ber of observer sets. In the FLEXclusive cache, the exist-
ing dedicated exclusive sets act for the observer sets. Only
in the exclusive mode, the bypass decision is made on the
cache blocks that access the FLEXclusive cache’s following
sets, just like the original bypass mechanism is applied to an
exclusive cache.

(a) Bypass Algorithm on FLEXclusion
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Figure 13. Applying a bypass algorithm to FLEXclusion.

Figure 13 shows the performance and L3 insertions rel-
ative to FLEXclusion and exclusion when a bypass algo-
rithm is applied on each. As Figure 13(a) shows, almost
50 workloads enter the exclusive mode in the FLEXclu-
sive cache, so the bypass algorithm is applied. The results
show that the bypass algorithm reduces bandwidth signif-
icantly, but it also sacrifices performance in the FLEXclu-
sive cache. This is the same for applying the bypass algo-
rithm to the baseline exclusive cache (Figure 13(b)). As
expected, when the bypass improves performance in the
baseline, it also improves performance in the FLEXclusive
cache. For example, for workload 16 and 28, employing
bypass increases performance by 12.0% and 26.2% in the
FLEXclusive cache and by 5.7% and 23.5% in the exclusive
cache, respectively. Hence, we can conclude that the nega-
tive or the benefit of bypass algorithms can be applied to the
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Figure 15. FLEXclusion with the aggressive mode.

FLEXclusive cache. Unfortunately, unlike FLEXclusion, a
simple bypass algorithm saves bandwidth consumption at
the cost of non-negligible performance loss. More complex
bypass algorithms can overcome these issues, but again, the
complex bypass algorithms can be also applied on top of
the FLEXclusive cache. On average, FLEXclusion with the
bypass algorithm reduces the L3 insertion traffic by 48.9%
over FLEXclusion.

5.5.2. Per-Core Inclusion Policy (PER-CORE) To pro-
vide insight into the per-core policy, we show the operat-
ing mode distribution for two workload mixtures in Fig-
ure 14(a). As shown in Figure 11, bzip2 and h264ref favor
the exclusive mode when multiple workloads are competing
for the shared L3 cache, while bwaves and mcf mostly fa-
vor the non-inclusive mode. In the leftmost two bars (FLEX
in bzip2+bwaves), we can see that L3 is set to the non-
inclusive mode when bzip2 and bwaves are running on core-
0 and core-1, respectively. However, the per-core policy
(FLEX+PER-CORE) allows each core to have a different
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Figure 16. Traffic breakdown for singlethreaded workloads (A+B).

operating mode that is the best for each workload, thereby
leading to a 8.8% performance improvement over FLEX-
clusion. Similarly, for h264ref+mcf, FLEX+PER-CORE
allows core-1 to operate in the non-inclusive mode, which
reduces 28% of L3 insertions over FLEXclusion.

Without the per-core policy, the L3 cache is configured
as the exclusive mode for many workload mixtures due to
the decrease in effective cache space, which penalizes one
of the workloads that can favor the non-inclusive mode. As
shown in Figure 14(b), the per-core policy addresses this
problem and reduces L3 insertion traffic over FLEXclusion
with almost no performance degradation.

5.5.3. Aggressive Non-Inclusive Mode (AGG) Figure 15
shows the result when FLEXclusion tries to achieve perfor-
mance more aggressively at the cost of more bandwidth
consumption in the non-inclusive mode, especially when
the bandwidth consumption is very low. For the evalua-
tion, we use Insertionth = 20 (IKPI) as a threshold. As
a result, 56 out of 91 workloads improve performance as
much as 3.02% in workload 90 (gcc+bwaves), as shown
in Figure 15(a). Due to the aggressiveness, FLEX+AGG
increases the number of L3 insertions as expected, but
FLEX+AGG still reduces L3 insertion traffic by 31.9% over
exclusion (Figure 15(b)).

5.6.. Discussion

5.6.1. Considering Other Traffic We have so far con-
sidered the number of L3 insertions as a metric because
(1) L3 insertions make a difference in traffic between non-
inclusion and exclusion (Eq. (5)) and (2) the insertion traf-
fic can be eliminated, unlike others, and thus is a target of
FLEXclusion. To discuss the overall impact on traffic reduc-
tion in an on-chip network, we consider all traffic generated
by cache and memory. Figure 16 shows the breakdown of
traffic for single-threaded workloads (A+B).

As shown in the figure, L3 insertions take up a significant
portion of all traffic in an exclusive cache, and FLEXclusion
attempts to alleviate the insertion traffic wherever possible.
Note that data messages between a memory controller (MC)
and caches cannot be reduced since they are either memory
requests or write-backs to memory. Data messages from L3
to L2 also cannot be eliminated because they are L3 hits,

which must be provided into upper-level caches. Figure 16
also shows that the contribution of address messages to the
total amount of traffic is less significant compared to data
messages. This is because, although the number of address
messages is large and comparable to data messages, these
are short (1 flit) compared to data messages (9 flits).

5.6.2. Power Savings of FLEXclusion The traffic reduc-
tion provided by FLEXclusion is translated into the power
savings of an on-chip network.6 In on-chip interconnects,
links and routers are the main contributors to energy con-
sumption, and router energy is mostly consumed by FIFO
buffers, crossbars, and arbiters [4, 15]. Most power con-
sumption is due to the dynamic power dissipation of these
components, which is directly related to the amount of traf-
fic inside on-chip interconnects.
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Figure 17. Onchip network power consumption.

Figure 17 shows the average power consumption of the
evaluated on-chip network normalized to exclusion for dif-
ferent workload mixtures. In A+B, 2-MIX-S and 4-MIX-S,
FLEXclusion reduces power consumption over exclusion
by 19.6%, 15.6%, and 17.6%, respectively. Also, in 2-
MIX-A, FLEXclusion reduces on-chip network power by
20.5%. We expect that FLEXclusion would play a more im-
portant role in the future as the number of cores increases
and on-chip interconnects have more routers. For instance,

6The increase in power consumption to support FLEXclusion is very
small. For set dueling, only 3% of cache sets are sampled, and a storage
overhead is a few bytes. Compared to the dynamic power reduction in
LLCs offered by FLEXclusion, register accesses due to set dueling are
negligible. Hence, we can safely discuss power numbers only regarding
on-chip networks.
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the Raw multiprocessor [18] has a 4×4 mesh on-chip net-
work, which results in consuming 7.1W (about 36% of the
total chip power) [21]. However, the evaluation of FLEX-
clusion with various on-chip networks, such as with varying
the number of nodes and different topologies, is beyond the
scope of this paper.

5.6.3. Impact of FLEXclusion on Off-chip Traffic

FLEXclusion increases off-chip traffic negligibly compared
to exclusion since it reverts from non-inclusion to exclu-
sion for the workloads where the difference in off-chip ac-
cesses between the two would increase significantly. Also,
as shown in Figure 16 (Data (MC<->Caches) can represent
the amount of off-chip traffic), the difference in off-chip
traffic between FLEXclusion and exclusion is much smaller
than the difference in on-chip traffic. For the reason, the
slight increase in power expended due to extra off-chip ac-
cesses is very small compared to the on-chip power savings.

5.6.4. FLEXclusion on Multi-threaded Workloads

With multi-threaded applications, FLEXclusion is expected
to perform well. When workloads do not have much
shared data, we expect that FLEXclusion has an impact
on performance and traffic reduction similar to multi-
programmed workloads since they resemble each other
to some extent. For workloads where data is frequently
shared among threads, the benefit of power reduction
by FLEXclusion can be a bit decreased due to cache
coherence messages. However, the energy consumption of
coherence messages is reported to be around 18% of the
total on-chip network [14], so FLEXclusion still can reduce
the rest of the on-chip network power significantly. In
addition, there are techniques to implement power-efficient
cache coherence protocols for on-chip networks such
as [4], and FLEXclusion is orthogonal to these techniques.
Hence, FLEXclusion does not lose its importance with
multi-threaded workloads.

5.6.5. Sensitivity of FLEXclusion Figure 18 shows the
relationship of performance loss and L3 insertion reduction
among different performance thresholds. The results are the
average of 91 workloads. As the results show, we can flex-
ibly balance performance and bandwidth requirements by
controlling the threshold. In this paper, we used T=5 for all
experiments. However, when on-chip bandwidth require-
ments are less strict, we can use smaller threshold values to
alleviate the performance loss.

6.. Related Work

6.1.. Cache Inclusion Property

Baer and Wang studied the concept of multi-level in-
clusive cache hierarchies to simplify cache coherence pro-
tocols [3]. Zahran et al. discussed several non-inclusion
cache design strategies along with the benefits of non-
inclusive caches [24]. The performance benefit of exclu-
sive caches over inclusive caches has been studied by sev-
eral researchers, including Zheng et al. [12, 25]. All these
works provide the benefits and disadvantages of exclusive,
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inclusive, and non-inclusive caches, but they assume that
the cache inclusion policy is statically determined at design
time. However, in our FLEXclusion, we break this assump-
tion and dynamically configure caches between exclusion
and non-inclusion at run-time.

The most relevant work to FLEXclusion is the recently
proposed temporal locality-aware (TLA) cache manage-
ment policy by Jaleel et al. [8]. The goal of the TLA mech-
anism begins from the opposite direction of FLEXclusion.
FLEXclusion aims to achieve the best of both exclusive
cache and non-inclusive cache, while TLA targets the best
of both non-inclusive and inclusive caches. TLA tries to
achieve performance that is similar to non-inclusive cache
without breaking the inclusion property. However, TLA still
cannot achieve performance similar to exclusive caches. On
the contrary, the FLEXclusive cache achieves almost the
same performance as that of an exclusive cache while sav-
ing on-chip bandwidth consumption significantly by operat-
ing as non-inclusive mode when it is more efficient.

6.2.. Bypassing LLC Insertions

Including the recent work of Gaur et al. [5], several by-
pass algorithms with dead block predictions have been pro-
posed [11,13,19]. Although bypass mechanisms and FLEX-
clusion share similar actions (i.e., both schemes do not in-
sert some blocks into the LLC), the cause and performance
impact are actually very different. Bypass algorithms do
not insert a block when the block is predicted to be dead.
On the contrary, FLEXclusion does not insert a block to the
LLC because the block is already in the LLC (non-inclusive
mode).7 Hence, in bypass mechanisms, bypassed blocks
could result in a performance loss if the prediction is wrong
(i.e., the block is live). However, bypassed blocks in FLEX-
clusion do not cause a performance degradation because the
blocks are still in the LLC. Furthermore, FLEXclusion can
always employ bypass mechanisms on the exclusive mode,
as shown in Section 5.5.1.

7Since the non-inclusive cache does not strictly enforce inclusion, the
block might not exist in the LLC, but this happens less frequently.
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7.. Conclusions

While exclusive last-level caches (LLCs) are effective
at reducing off-chip memory accesses by fully utilizing on-
chip cache capacity, exclusive caches require higher on-chip
bandwidth compared to inclusive and non-inclusive caches
due to a higher rate of LLC insertion traffic. A non-inclusive
cache, on the other hand, does not require clean victims
from the upper level caches to be inserted in the LLC, thus
reducing the demand on an on-chip network. Unfortunately,
the data replication in non-inclusive caches causes them to
have lower effective cache capacity, thereby reducing per-
formance when the workload needs more cache capacity.

This paper investigated a dynamic mechanism called
FLEXclusion that can change the cache organization be-
tween exclusion and non-inclusion depending on the work-
load requirement. Our evaluation shows that the FLEXclu-
sive cache reduces the LLC insertion traffic compared to
the static exclusive LLC design, thereby saving power. The
FLEXclusive cache also improves performance compared
to the static non-inclusive LLC cache. We also show that
the FLEXclusive cache can employ other cache optimiza-
tion techniques such as bypassing mechanisms to achieve
further benefits.

In this paper, we restricted FLEXclusion to choose be-
tween non-inclusion and exclusion, as these two designs
have similar coherence framework. An alternative FLEX-
clusion design can also select between inclusion and other
modes; however, it would need to ensure that the inclusion
requirements are met before the cache mode is set to in-
clusion (for example by flushing the upper level caches).
Thus, a generalized form of FLEXclusion can be designed
to adapt between inclusion, non-inclusion, and exclusion de-
pending on the workload requirements. Exploring such a
generalized design is part of our future work.
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