
Adaptive Testing of Compute-in-Memory Based
CNNs Using Probabilistic Test Acceptance Limits

Anurup Saha1, Kwondo Ma2, Chandramouli Amarnath3, Moinuddin Qureshi1 and Abhijit Chatterjee1

1School of Electrical and Computer Engineering, Georgia Institute of Technology, 2Rebellions, South Korea, 3Google, USA
Email: asaha74@gatech.edu, magunudo@gmail.com, chandamarnath@google.com,

moin@gatech.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—Compute-in-memory (CiM) based convolutional
neural network (CNN) accelerators achieve low-power inference,
utilizing memristive crossbar arrays for matrix multiplications.
However, inherent conductance variations within the crossbar
introduce computational errors. These errors propagate to the
CNN output and cause image misclassification, leading to sub-
stantial accuracy degradation. This paper addresses the critical
challenge of efficient and reliable post-manufacture testing for
CiM-based CNN accelerators. We propose a novel test image
sampling methodology, which iteratively applies sampled im-
ages from the CNN’s testing dataset using progressive random
sampling (PRS) to a device under test (DUT) and estimates
a confidence interval for the DUT accuracy. Based on the
confidence interval and the acceptable accuracy threshold, the
test labels a DUT as ”pass” or ”fail”. Furthermore, if we have
access to an initial set of DUTs, we apply the images from the
CNN’s testing dataset to these DUTs and leverage the DUT
outputs to rank-order test images. We develop a sequential
estimation test (SET) framework, where the images from the
CNN’s testing dataset are sequentially applied according to a
predetermined rank and the test terminates when a DUT can
be confidently labeled as “pass” or “fail” based on the applied
images. In each case, the number of applied test images adapts
to the quality of the DUT. Experiments show that PRS and SET
achieve 2.2× and 4.6× speedup compared to state-of-the-art test
methodologies.

Index Terms—Compute-in-memory, Convolutional neural net-
work, Adaptive testing.

I. INTRODUCTION

The increasing growth of deep learning applications has led
to demand for energy-efficient hardware accelerators. Analog
compute-in-memory (CiM) based architectures eliminate the
memory-wall bottleneck of traditional Von-Neumann archi-
tectures by removing separation of processing elements and
memory [1]. In these architectures, memristive crossbar arrays
(MCA) store the weights of a CNN and perform in-place
matrix multiplication using Kirchhoff’s current law. Emerging
memory technologies such as resistive random access mem-
ory (RRAM) and magnetoresistive random access memory
(MRAM) are commonly used to implement memristive cross-
bar arrays [2]. The works of [3], [4] have explored how CNNs
can be accelerated using CiM architectures.

Despite these advantages, analog CiM architectures face
several challenges that hinder their widespread adoption. Un-
like conventional digital circuits, these systems operate using
analog computation principles, making them more susceptible
to noise and non-idealities in memristive cells. As a result

memristor-based implementations of CNNs achieve lower
classification accuracy compared to their digital counterparts.
Further, the conductance variation profile of every manufac-
tured crossbar is unique. These challenges demand robust
testing strategies for every manufactured crossbar-based CNN
to ensure reliable CiM-based deep learning acceleration.

Adaptive testing of analog circuits has been explored in
[5], [6]. Similarly, testing of AI accelerators has been widely
studied [7]. The work of [8] uses machine learning methods
to evaluate fault criticality in machine learning accelerators.
In [9], test pattern generation to detect functional safety
violations is developed. In [10], a compact functional test
for DNNs is proposed. A machine learning assisted alternate
test architecture is proposed in [11]. Among these methods,
alternate test achieves state-of-the-art test accuracy as well as
significant speedup compared to exhaustive testing. Alternate
test has also been successfully applied to spiking neural net-
works in [12]. Despite the benefits, alternate test suffers from
two major limitations: (1) It requires training a regressor using
DUT output measurements. (2) Due to prediction error of the
regressor, the speedup can be limited in certain scenarios.

In this research, a novel CiM-based CNN test methodology
is developed that is suitable for test environments where the
entire test image dataset (numbering 10,000 for CIFAR-10)
is available for testing each DUT during manufacturing test.
Consequently, training a regressor for predicting DUT classi-
fication accuracy (expensive, requires access to the outputs
of neurons in the CNN layers) is not a test requirement.
Moreover, test decisions are based solely on whether a selected
test image is classified correctly or not. So no access to
neuron outputs as in [11], is needed. Estimates of DUT
accuracy are computed after every applied test image derived
from progressive random sampling (PRS) of test images and
the uncertainty in estimating the DUT accuracy is bounded
using statistical methods. Based on the estimated accuracy,
the uncertainty bounds and the accuracy threshold, either the
DUT is labeled as “pass” or “fail” or the next image is applied
to reduce the uncertainty in estimating DUT accuracy. The
technique adapts to the quality of the DUT (CNN). If the DUT
accuracy is significantly higher (or lower) than the acceptable
classification accuracy of the DUT, fewer test images are
needed (this identifies devices that are clearly “good” or “bad”,
respectively). Marginal DUTs are tested more aggressively.

To speed up the testing progress derived from PRS above,
we propose a sequential estimation test (SET) procedure,
which applies test images in a deterministic order. The images979-8-3315-3334-2/25/$31.00 ©2025 IEEE
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Figure 1: Overview of Alternate Test

are ordered based on their ability to accurately estimate
accuracies of DUTs with a specified confidence of estimation
using a greedy algorithm. After every applied image, the
maximum and minimum probable normalized accuracies for
each DUT are calculated and the test terminates when it can
categorize a DUT as ”pass” or ”fail”. In summary this research
makes the following contributions:
(1) We propose a progressive random sampling based test
image selection approach for testing CiM based CNN ac-
celerators. This does not require use of a regressor and is
more efficient than state of the art techniques in terms of test
efficiency.
(2) We develop a sequential estimation test (SET) framework,
which rank orders test images in a greedy manner based on
error minimization. SET achieves 4.6× speedup compared to
state-of-the-art alternate testing methods [11].

II. PRIOR WORK AND LIMITATIONS

A. Preliminaries of Regressor Based Alternate Test

Assume that a CiM based CNN (also referred to as device
under test or DUT) is evaluated using an image classification
dataset T = {im1, im2, · · · imT }. Let αt denote whether the
t-th image is correctly classified by the DUT (“1” for correct
classification and “0” for misclassification). The normalized
accuracy (p) and the accuracy (A) of the DUT are defined as:

p =
1

T

T∑
t=1

αt (1)

A = p× 100% (2)

If the acceptable accuracy threshold is Ath, the goal of the
test framework is to categorize a DUT as “pass” (A ≥ Ath)
or “fail” (A < Ath). From Equation (2), the accuracy of a
DUT can be calculated by applying all T images to a DUT
and calculating all αt values. Such a method is referred as
exhaustive test.

Exhaustive test incurs high test time as it requires applying
T images to every DUT. The key motivation of regressor-
based alternate test, as explained in Figure 1, is to label
a DUT as ”pass” or ”fail” without having to apply all T
images. In this framework, an image down-selection algorithm
is used to create a compact image dataset C with K images
(K << T ). In [11], image down-selection is performed by
hierarchical clustering of the binary classification results of
each image across a set of DUTs selected from diverse process
corners. The DUT logits (final layer outputs) corresponding to
application of each image from C are monitored. The logits
corresponding to all images are concatenated to extract a DUT

signature. The signature is passed to a trained regressor which
predicts the accuracy of the DUT as Â. If the maximum
prediction error due to finite expressive power of a regressor
is δ, the regressor prediction is used to classify the DUT if
|Ath − Â| > δ. Otherwise the DUT undergoes exhaustive
testing. During exhaustive testing, all images from T are
applied to the DUT and the DUT accuracy is calculated as
the percentage of correctly classified images. Based on the
calculated accuracy, a DUT is labeled as “pass” or “fail”.

B. Limitations of Alternate Test

There are two key limitations of the alternate test approach
[11] for CiM based CNNs. First, this requires the use of
a trained regressor to predict the DUT (CNN) classification
accuracy from the DUT response signature to the applied
test images in C . To train the regressor, an exhaustive test
image set is applied to D DUTs from diverse process corners
to obtain their classification accuracies. Also, the response
signature of each DUT to the applied compact image set C is
extracted. For each DUT, this results in a response signature
sigd and an corresponding classification accuracy Ad. The
data {(sig1, A1), (sig2, A2), · · · , (sigD, AD)} is used to train
the regressor. Second, the alternate test approach can suffer
from limited test speedup which is defined as the ratio of the
number of images in T and the average number of images
which are applied to a DUT in alternate test framework.
Assume that, the fraction of DUTs requiring exhaustive testing
is β. Then (1−β) fraction of DUTs are tested with K images
(using regressor prediction) whereas β fraction of the DUTs
require applying T images. The average number of images
required to test a DUT is βT +(1−β)K = K+β(T −K) ≈
K + βT (K << T ). The speedup is:

η =
T

K + βT
=

1

β + K
T

If the regressor used in alternate test has exact prediction
capability, then δ → 0 and β → 0. In such scenario,
speedup of T/K is achieved. However due to finite expressive
power of a regressor (δ > 0), in many scenarios we observe,
β >> K/T . In such cases, the speedup is merely 1/β, where
1/β << T/K.

III. CROSSBAR VARIABILITY MODEL

Convolutional neural networks consist of convolution, lin-
ear, max-pool, batch-normalization and rectified linear unit
(ReLU) activation layers. Among these layers, linear layers
use matrix vector multiplication (MVM) during inference.
On the other hand, convolution layers require general matrix
multiplication (GeMM) which can further be represented as a
sequence of MVMs. Memristive crossbar arrays can efficiently
compute MVM where the stationary weight matrix is stored
within a crossbar. Each weight is stored using a memristive
device of equivalent conductance. The inputs to the crossbar
are generated in the form of analog voltages using digital-
to-analog converters (DACs). The current outputs from the
crossbar are converted back to real numbers using analog-to-
digital converters (ADCs). The ADC outputs constitute the
MVM outputs and are passed to digital computation units for
maxpool and batch-normalization and activation operations.
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We refer the reader to [4] for more details about CNN
acceleration using compute-in-memory architectures.

MVM outputs from an analog crossbar suffer from com-
putational errors due to stochastic conductance variations of
memristive cells, which manifest in the form of device-to-
device and cycle-to-cycle conductance variations [13]. Inter-
chip device-to-device variations impact all memristor cells
in a crossbar equally. Intra-chip device-to-device variation
has spatially correlated and independent random components
[14]. Cycle-to-cycle variations can be modeled as independent
random variation. As a result, we model conductance variation
as a sum of systematic, spatially correlated and independent
random variations. The goal of the variability model is to
perform CNN inference such that the impact of stochastic
conductance variation on image classification can be modeled
accurately. To do so, we replace each weight of the convolution
and dense layers of the CNN with corresponding non-ideal
weight values. We modify the i-th weight of a layer as:

w
′

i = wi × (1 + ϵi) = wi × (1 + ϵs + ϵci + ϵri ) (3)

Here ϵs, ϵci , and ϵri refer to systematic, spatially correlated
and random non-ideality factors. We refer to ϵi as the non-
ideality factor. Following prior work [15], for each DUT we
sample a shared systematic non-ideality factor ϵs from a zero
mean normal distribution with variance σ2

sys. On the other
hand, the random non-ideality factor corresponding to each
weight is independently sampled from another zero mean
normal distribution with variance σ2

rand. The spatially corre-
lated non-ideality factor is sampled from a spacial covariance
matrix Γ, where the (i, j)-th element of Γ represent the spatial
correlation between the memristive cells storing the i-th and
j-th weight. We refer the reader to [14], [15] for calculation
of the spatial covariance matrix.

IV. PROGRESSIVE RANDOM SAMPLING

The core idea of progressive random sampling (PRS) is
to iteratively apply a set of random images from the CNN’s
testing dataset to a DUT (starting with a single image),
estimate its normalized accuracy based on the applied images
and compute a confidence interval around the estimated nor-
malized accuracy of the DUT. Based on the confidence interval
and acceptable accuracy threshold, PRS checks whether it
is possible to label a DUT as “pass” or “fail” with high
confidence (specified). If this is not possible, the test image
set is expanded with another randomly selected image and
the process is repeated till a DUT can be labeled as “pass”
or “fail” with high confidence. Figure 2 illustrates PRS with
an example. Here pth is the acceptable normalized accuracy
threshold. In the first iteration im1 is applied to the DUT and
the confidence interval of the estimated normalized accuracy
is [plo, phi]. Since pth is within [plo, phi] it is not possible to
label the DUT as “pass” or “fail” In the following iterations
im4, im3 and im2 are applied to the DUT. As more images
are applied, the range of the confidence interval shrinks and
after the fourth iteration the DUT can be labeled as “fail”.

The rest of this section is organized as: (1) We first define
the estimated normalized accuracy of a DUT p̂t when t
randomly selected images are applied to the DUT (Equation

(4)). (2) We derive a confidence interval [plo, phi] such that
the true normalized accuracy of the DUT p ∈ [plo, phi] with
high probability (p is defined in Equation (1)). (3) We use the
calculated confidence interval to develop a testing algorithm
(Algorithm 1).

A. Estimated Normalized Accuracy and Confidence Interval
Consider a DUT being evaluated using the testing

dataset of the CNN T consisting of T images T =
{im1, im2, · · · , imT }. Equation (1) defines the normalized
accuracy of the DUT. Our goal is to accurately estimate p
using t images (t ≤ T ). If we randomly pick t images from
T , and αk is a random variable representing whether the
k-th image is correctly classified (1 ≤ k ≤ t, αk = 1
for correct classification and 0 for misclassification), then αk

is a Bernoulli random variable with mean p. We define the
estimated normalized accuracy (ENA) as:

p̂t =
1

t

t∑
k=1

αk (4)

Next, we want to calculate plo and phi such that P (plo ≤
p ≤ phi) → 1. To derive the confidence interval, we first
calculate the mean and variance of p̂t. Since p̂t is an average
of independent Bernoulli variables, the central limit theorem
implies that for a sufficiently large t ≥ Tmin, p̂t follows a
normal distribution with mean p and variance σ2

t = p(1−p)
t .

We provide a formal proof of the mean and variance of
p̂t using the fact that αk is a Bernoulli random variable and
E[αk] = p. We calculate the mean of p̂t as:

E[p̂t] = E[
1

t
(

t∑
k=1

αk)] =
1

t

t∑
k=1

E[αk] =
1

t

t∑
k=1

p = p

The variance of p̂t can be calculated as:

var(p̂t) = E
[
p̂2t
]
− E

[
p̂t
]2

= E
[
(
1

t

t∑
k=1

αk)
2
]
− p2

=
1

t2
E
[ t∑
i=1

t∑
j=1

αiαj

]
− p2

Now, if i ̸= j, then αi and αj are independent. As a result,

E[αiαj ] = E[αi]× E[αj ] = p× p = p2

If i = j, we obtain:

E[αiαj ] = E[α2
i ] = P (αi = 0)× 0 + P (αi = 1)× 1 = p

Using the value of E[αiαj ],

var(p̂t) =
1

t2
E
[ t∑
i=1

t∑
j=1

αiαj

]
− p2

=
1

t2
E
[ t∑
i=1

t∑
j=1,j ̸=i

αiαj +

t∑
i=1

α2
i

]
− p2

=
1

t2
(
(t2 − t)p2 + tp

)
− p2

=
1

t
p(1− p)
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Figure 2: Overview of Progressive Random Sampling and Sequential Estimation Test

Based on the mean and variance of p̂t, we calculate plo
and phi such that P (plo ≤ p ≤ phi) → 1 We define the
approximate lower bound and approximate upper bound of
the estimated normalized accuracy as:

plo = p̂t −mprsσt (5)
phi = p̂t +mprsσt (6)

Here mprs refers to the confidence multiplier for PRS. Re-
liable testing using progressive random sampling requires the
true normalized accuracy of a DUT to be within the confidence
interval [plo, phi]. The probability that p ∈ [plo, phi] can be
calculated as:

P (plo ≤ p ≤ phi)

= P (p̂t −mprsσt ≤ p ≤ p̂t +mprsσt)

= P (|p̂t − p| ≤ mprsσt)

= P (p−mprsσt ≤ p̂t ≤ p+mprsσt) (7)

= erf(mprs/
√
2) (8)

By definition of cumulative density function (CDF) of a
normal distribution, Equation (7) reduces to Equation (8).
Here erf(x) refers to the error function which is defined as
erf(x) = 2√

π

∫ x

0
e−t2dt.

For example, for mprs = 1.96 and 3 we obtain P (plo ≤
p ≤ phi) = 0.95 and 0.997 respectively. However, plo and phi
cannot be exactly calculated as σt depends on p, which is an
unknown DUT-dependent quantity. For estimation purposes,
we approximate σt ≈

√
1
t p̂t(1− p̂t). In Section IV-B, we use

plo and phi to develop a testing framework.

B. Test Framework

Algorithm 1 explains the overall testing framework. It starts
with a DUT and an image classification dataset T . At every
iteration of the test, a randomly sampled image is applied to
the DUT and based on DUT output αt is set to ’1’ or ’0’
(line 7). Next, we estimate the normalized accuracy p̂t and
derive approximate lower and upper bounds for the estimated
normalized accuracy plo, phi (line 9-11). If pth lies outside
the interval [plo, phi], based on plo and phi, we classify the
DUT as “pass” or “fail” (line 12 - 18). Otherwise, we keep
repeating the steps with a new image.

V. SEQUENTIAL ESTIMATION TEST

In progressive random sampling, the test images are applied
in random order. If we have access to an initial set of DUTs
to design a test framework, the statistics of the DUT outputs

Algorithm 1 Progressive Random Sampling

1: Input: Image dataset T = {im1, im2, · · · , imT }, accuracy
threshold Ath, normalized accuracy threshold pth = Ath

100
, device

under test (DUT). confidence multiplier mprs

2: Initialize: X = {}
3: for t = 1 to T do
4: Randomly sample an image imt from T − X
5: Add imt to X
6: Apply imt to DUT

7: Set αt =

{
1 if imt is correctly classified
0 otherwise

8: Estimated normalized accuracy: p̂t = 1
t

∑t
k=1 αk

9: Compute the standard deviation:

10: σt =
√

p̂t(1−p̂t)
t

11: Compute approximate lower and upper bounds of the esti-
mated normalized accuracy
plo = p̂t −mprsσt and phi = p̂t +mprsσt

12: if plo > pth and t ≥ Tmin then
13: Return pass
14: end if
15: if phi < pth and t ≥ Tmin then
16: Return fail
17: end if
18: end for
19: if p̂T ≥ pth then
20: Return pass
21: else
22: Return fail
23: end if

corresponding to the CNN testing dataset can be used to
create a deterministic order in which images should be applied
during testing to maximize test speedup. Figure 2 shows the
three steps of the proposed sequential estimation test (SET):
(1) We apply the CNN testing dataset images to a set of DUTs
(DUTs 1, 2 and 3 in Figure 2). Based on the DUT outputs we
use a greedy algorithm to rank order the images and create
an ordered image set. During DUT testing, the images are
sequentially applied based on this determined order.
(2) We apply the first t images from the ordered image set to
a set of DUTs (DUTs 4, 5 and 6 in Figure 2) and calculate
the difference between the true and estimated normalized
classification accuracy of the DUTs. The maximum difference
is defined as the maximum probable estimation error and is
calculated for 1 ≤ t ≤ T .
(3) During real-time DUT testing, images from the ordered
image set are applied sequentially in determined order and the
test termination criterion depends in the maximum probable
accuracy estimation error (Algorithm 3).
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A. Greedy Image Ordering

Greedy image ordering aims at minimizing the difference
between estimated and true normalized accuracies of DUTs
with as few images as possible. Algorithm 2 outlines the
overall image ordering methodology. The algorithm starts with
D1 DUTs, where the normalized accuracy of the d-th DUT
pd is known. The ordered image set O is initialized as an
empty set and the estimated normalized accuracy for each
DUT p̂d0 is initialed to 0. At every iteration we sample J
images {xj}Jj=1 from T − O (line 4). Each sampled image
is applied to the D1 DUTs and estimated normalized accuracy
is calculated for each DUT after applying a sampled image
xj (line 6-8). For each sampled image, mean absolute error
is calculated based on the difference of estimated and true
normalized accuracies (line 10). The image which achieves
the least error is appended to the ordered image set and
the estimated normalized accuracy after applying t images is
updated accordingly (line 12-14).

Algorithm 2 Greedy Image Ordering
1: Input: (1) D1 DUTs, where the normalized accuracy of the d-th

DUT is pd (2) CNN testing dataset T = {im1, im2, · · · , imT }
2: Initialize: (1) Ordered image set O = {} (2) Estimated normal-

ized accuracy p̂dt = 0 for 1 ≤ d ≤ D1.
3: for t = 1 to T do
4: Sample J images {x1, · · ·xJ} from T − O where

J = min{|T − O|, Jmin}
5: for each xj do
6: for d = 1 up to D1 do

7: Set αd
j =

{
1 if d− th DUT correctly classifies xj

0 otherwise
8: Estimated normalized accuracy p̂dj = 1

t
[(t−1)p̂dt−1+αd

j ]
9: end for

10: Calculate mean absolute error ej = 1
D1

∑D1
d=1 |p̂

d
j − pd|

11: end for
12: Set ot = xj

′ where j
′
= argminj ej

13: Set O = O ∪ ot
14: Update p̂dt = 1

t
[(t− 1)p̂dt−1 + αd

j
′ ] (for 1 ≤ d ≤ D1)

15: end for
16: Return O

B. DUT Labeling

Assume that the normalized accuracy of a DUT is pd and
the estimated normalized accuracy using the first t images
from O is p̂dt . We measure p̂dt for D2 DUTs (these DUTs
are different from the previous D1 DUTs). We define the
maximum probable estimation error corresponding to t images
as:

ϵt = max
d∈{1,2,··· ,D2}

|pd − p̂dt | (9)

Maximum probable estimation error is calculated for 1 ≤
t ≤ T . Finally, using the ordered image set and the maximum
probable estimation error, we develop the test framework, as
outlined in Algorithm 3. We iteratively apply images from
the ordered test set O and calculate the estimated normal-
ized accuracy (line 3-5). Based on the maximum probable
estimation error, we calculate minimum and maximum proba-
ble normalized accuracies (line 6). Here mset refers to the

Algorithm 3 DUT Labeling

1: Input (1) Ordered image set O = {ot}Tt=1 (2) Maximum
probable estimation error {ϵt}Tt=1 and (3) a DUT (4) Accuracy
threshold Ath, normalized accuracy threshold pth = Ath

100
2: for t = 1 up to T do
3: Apply ot to the DUT

4: Set αt =

{
1 if ot is correctly classified
0 otherwise

5: Estimated normalized accuracy p̂t =
1
t

∑t
k=1 αk

6: Calculate (1) minimum probable normalized accuracy = p̂t −
msetϵt (2) maximum probable normalized accuracy = p̂t +
msetϵt

7: if p̂t +msetϵt < pth then
8: Return fail
9: end if

10: if p̂t −msetϵt > pth then
11: Return pass
12: end if
13: end for
14: if p̂T ≥ pth then
15: Return pass
16: end if
17: Return fail

confidence multiplier for sequential estimation test. If the
minimum probable normalized accuracy is higher than pth or
the maximum probable normalized accuracy is lower than pth,
then DUT is labeled as ”pass” or ”fail” and the test terminates
(line 7-12). Otherwise, the next image is applied and the
process repeats. When all images in O are exhausted, the DUT
is classified based on the estimated normalized accuracy and
the accuracy threshold.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the proposed framework for VGG16 [16] and
Mobilenet [17] architectures trained on the CIFAR-10 dataset
[18]. With ideal weights, the classification accuracies of
VGG16 and Mobilenet are 93.24% and 91.74% respectively.
For variability modeling, if the variance of ϵi is σ2

tot, we
define

σ2
sys

σ2
tot

× 100% as the percentage of systematic variation.
Percentage of spatially correlated and random variation is
defined similarly. Following [15], we use 25% systematic, 25%
spatially correlated and 50% random variation for all simula-
tions. For greedy image ordering we use D1 = 500 DUTs. For
maximum probable estimation error (MPEE) calculation, we
use another D2 = 500 DUTs. Both PRS and SET frameworks
are evaluated on another set of 1000 DUTs. The highest DUT
accuracy is 91.71% for VGG16 and 88.39% for Mobilenet.
For evaluating PRS and SET, we fix Ath as 5, 10 and 15%
lower compared to the maximum DUT accuracy.

The test frameworks are evaluated based on three metrics
(1) Test escape (TE) (2) Yield Loss (YL) (3) Effective number
of images (Neff ). If the accuracy of a DUT satisfies A < Ath,
but the DUT is labeled as “pass” during testing, it is referred
as false positive. On the other hand, if a DUT has accuracy
A ≥ Ath, but is labeled as “fail” during testing, it is referred as
false negative. Test escape is defined as the percentage of false
positives with respect to the total number of DUTs. Yield loss
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Mobilenet VGG
Ath = 83.39 Ath = 78.39 Ath = 73.39 Ath = 86.71 Ath = 81.71 Ath = 76.71

mprs TE YL Neff TE YL Neff TE YL Neff mprs TE YL Neff FP YL Neff TE YL Neff

1.5 2.2 1.2 362 0.7 1.2 279 1 1.4 213 1.5 2.4 2.2 420 1.7 1.2 235 0.7 0.8 269
1.75 1.6 0.7 510 0.4 0.8 418 0.6 0.7 292 1.75 1.2 1.1 592 1.1 0.8 354 0.6 0.4 363

2 0.9 0.6 665 0.4 0.4 517 0.4 0.3 405 2 0.8 0.3 878 0.9 0.5 464 0.3 0.4 453
2.25 0.7 0.3 776 0.3 0.1 647 0.1 0.1 547 2.25 0.6 0.2 1072 0.7 0.2 600 0.2 0.2 530
2.5 0.4 0.1 953 0.3 0 745 0 0.1 642 2.5 0.3 0 1313 0.4 0 725 0.2 0.1 629
2.75 0.1 0 1117 0.1 0 863 0 0 757 2.75 0.1 0 1511 0.3 0 856 0.1 0 718

3 0.1 0 1226 0 0 955 0 0 832 3 0.1 0 1746 0.3 0 982 0.1 0 799

Table I: Progressive Random Sampling: As mprs increases, TE, YL decrease and Neff increases
Mobilenet VGG

Ath = 83.39 Ath= 78.39 Ath = 73.39 Ath= 86.71 Ath = 81.71 Ath = 76.71
mset TE YL Neff TE YL Neff TE YL Neff mset TE YL Neff TE YL Neff TE YL Neff
0.6 1.4 1 206 3.2 3 140 4.4 0.9 62 0.6 1.7 2.1 375 10.4 1 4 2.3 4.5 4
0.8 0.3 0.1 486 0 0.2 359 0.8 0.3 219 0.8 0.5 0.2 811 0.4 0.2 314 2.2 0.3 108
1 0 0 707 0 0.1 515 0.1 0 367 1 0 0 1162 0.1 0.2 493 0.1 0 333

1.2 0 0 884 0 0 665 0 0 485 1.2 0 0 1423 0 0 663 0 0 443

Table II: Sequential Estimation Test: As mset increases, TE, YL decrease and Neff increases

is defined as the percentage of false negatives with respect
to the total number of DUTs. If the d-th DUT requires Nd

images for testing, we define effective number of images as
Neff = 1

1000

∑1000
d=1 Nd. Any test framework should try to

achieve low TE, YL and Neff .
In PRS, mprs is multiplied with “standard deviation of

expected error” whereas in SET, mset is multiplied with
“maximum probable estimation error”. As a result, for reliable
testing, we require mprs > mset. In our experiments, for PRS,
we use Tmin = 100 and we sweep mprs from 1.75 to 3.0.
For SET, we sweep mset from 0.6 to 1.2. For greedy image
ordering Jmin is set to 500.
B. Progressive Random Sampling

Table I shows the performance of PRS. In PRS, the range
of the confidence interval (phi − plo) is proportional to the
confidence multiplier mprs. As mprs increases, the probability
of the true normalized accuracy being within the confidence
interval increases. As a result both test escapes and yield
loss reduce. On the other hand the termination criterion of
PRS requires non-overlap between the normalized accuracy
confidence interval ([plo, phi]) and the normalized accuracy
threshold (pth). As a result when mprs increases DUTs require
more images for testing and effective number of images
(Neff ) increases. We observe that for mprs ≤ 2, there
is significant test escape and yield loss. For example, for
Mobilenet we observe 0.9% TE and 0.6% YL corresponding
to mprs = 2.0. For mprs ≥ 2.75, Neff is high. For example,
for VGG16 and Ath = 86.71, Neff = 1511. As a result,
to achieve both lower test escapes and yield loss and lower
Neff during post-manufacture test, we recommend using
mprs = 2.25 or 2.5 .
C. Sequential Estimation Test

Table II explains the performance of the SET framework.
Similar to PRS, in SET as well, as the confidence multiplier
mset increases, TE and YL reduce, but Neff increases. For
VGG16 and mset = 0.6, TE exceed 10% (for Ath = 81.71)
and YL is 4.5% (for Ath = 76.71%) making it unsuitable for
post-manufacture testing. For mset = 1.2, Neff is 1423 for
VGG16 (Ath = 86.71). Overall, we recommend mset = 1.0,
which achieves TE and YL less than 0.2% and Neff ≤ 1162
for all simulation conditions.

Figure 3: Comparison with progressive random sampling
(PRS), sequential estimation test (SET) and alternate test (AT)

D. Comparison with Prior Work

We compare both SET and PRS with alternate test, proposed
in [11]. We evaluate the three methods in terms of misclas-
sification rate (sum of TE and YL) and effective number
of images (Neff ). All three methods aim at achieving low
misclassification rate (MR) and low Neff . Figure 3 shows
that for any given Neff , SET achieves the lowest MR.
Similarly, for any given MR, SET achieves the lowest Neff .
For example, for VGG16 and Ath = 86.71, SET, PRS and AT
requires Neff = 973, 1313 and 4258 to achieve MR = 0.3%.
As a result, for the same MR, SET is 4.4× faster than AT and
PRS is 3.2× faster than AT. Similarly, for an accuracy cutoff
of 81.71% and MR = 0.3%, SET, PRS and AT requires 407,
856 and 1861 images respectively. It implies that SET is 4.6×
faster than AT whereas PRS is 2.2× faster than AT.

VII. CONCLUSION

This research proposes two novel algorithms for testing
compute-in-memory based convolutional neural network ac-
celerators. Progressive random sampling iteratively applies
random images from a CNN’s testing dataset to characterize a
DUT as “pass” or “fail”. Sequential estimation test leverages
DUT output statistics to rank-order images from the CNN’s
testing dataset. Both sequential estimation test and progressive
random sampling outperform state-of-the-art testing methods
in terms of misclassification rate and test speedup.
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