TicToc: Enabling Bandwidth-Efficient DRAM Caching
for both Hits and Misses in Hybrid Memory Systems

Vinson YoungT, Zeshan A. Chishti*, and Moinuddin K. QureshiT

tGeorgia Institute of Technology

tintel

{vyoung,moin}@gatech.edu, zeshan.a.chishti@intel.com

Abstract—This paper investigates bandwidth-efficient DRAM
caching for hybrid DRAM + 3D-XPoint memories. 3D-XPoint
is becoming a viable alternative to DRAM as it enables high-
capacity and non-volatile main memory systems. However, 3D-
XPoint has several characteristics that limit it from outright
replacing DRAM: 4-8x slower read, and even worse writes. As
such, effective DRAM caching in front of 3D-XPoint is important
to enable a high-capacity, low-latency, and high-write-bandwidth
memory. There are currently two major approaches for DRAM
cache design: (1) a Tag-Inside-Cacheline (TIC) organization that
optimizes for hits, by storing tag next to each line such that one
access gets both tag and data, and (2) a Tag-Outside-Cacheline
(TOC) organization that optimizes for misses, by storing tags
from multiple data lines together in a tag-line such that one
access to a tag-line gets information on several data-lines. Ideally,
we would like to have the low hit-latency of TIC designs, and
the low miss-bandwidth of TOC designs. To this end, we propose
a TicToc organization that provisions both TIC and TOC to get
the hit and miss benefits of both.

We find that naively combining both techniques actually
performs worse than TIC individually, because one has to pay
the bandwidth cost of maintaining both metadata. The main
contribution of this work is developing architectural techniques
to reduce bandwidth cost of accessing and maintaining both TIC
and TOC metadata. We find that most of the update bandwidth
is due to maintaining the TOC dirty information. We propose a
DRAM Cache Dirtiness Bit technique that carries DRAM cache
dirty information to last-level caches, to help prune repeated
dirty-bit updates for known dirty lines. We also propose a
Preemptive Dirty Marking (PDM) technique that predicts which
lines will be written and proactively marks the dirty bit at install
time, to help avoid the initial dirty-bit update for dirty lines.
To support PDM, we develop a novel PC-based Write-Predictor
to aid in marking only write-likely lines. Our evaluations on a
4GB DRAM cache in front of 3D-XPoint show that our TicToc
organization enables 10% speedup over the baseline TIC, nearing
the 14% speedup possible with an idealized DRAM cache design
with 64MB of SRAM tags, while needing only 34KB SRAM.

I. INTRODUCTION

As memory systems scale, non-volatile memories or NVMs
(such as, 3D-XPoint [1]) are emerging as viable alternatives
to DRAM. NVMs offer the advantages of higher bit density
and the ability to retain data after power outages. However,
NVMs also have significant limitations that prevent them
from outright replacing DRAM in the memory hierarchy. For
example, 3D-XPoint is reported to have 4-8x slower read, and
even slower writes compared to DRAM [2]. As such, future
systems are likely to utilize hybrid memory systems [3], [4],
[5], [6] consisting of both DRAM and 3D-XPoint. We focus
on the setup where DRAM is operated as a hardware-managed
cache for 3D-XPoint based main memory, since such a setup
enables applications to benefit from the lower latency and
higher write-bandwidth of DRAM and the higher capacity of
3D-XPoint without relying on any software or OS support.

Recently, there have been many works [7], [8], [9], [10], [11],
[12], [13] on architecting High Bandwidth Memory (HBM) [14]
caches in front of traditional DRAM main memory [15].
These works target improving memory bandwidth by migrating
data between DRAM and HBM, and servicing most data
at the higher internal/bus bandwidth of HBM. These works
are effective due to HBM having dedicated higher-bandwidth
channels/interfaces compared to commodity DDRx DRAM.
We would like to utilize the insights learned from these works
to design effective DRAM caches in front of NVMs, such
as 3D-XPoint. However, we note that there are significant
differences in setup and goals for a DRAM+3D-XPoint hybrid
memory as compared to a HBM+DDRx hybrid memory.

First, in a 3D-XPoint based hybrid memory, 3D-XPoint
and DRAM shareg the same DDRx channel interfaces [16].
Second, DRAM caches in front of 3D-XPoint target reducing
read latency and improving write bandwidth and endurance of
3D-XPoint, by servicing most data at the lower latency and
higher write bandwidth of DRAM. An added complexity is
that the DRAM cache and 3D-XPoint are likely to sit behind
the same channel [17], as depicted in Figure 1(a). Such a set-
up enables a balanced configuration where every channel has
DRAM backing it. However, in such a channel-sharing set-up,
bandwidth needed for maintaining DRAM cache metadata now
comes directly at a cost to bus bandwidth available for memory.
As such, there is a renewed need for bandwidth-efficient DRAM
caches. We analyze prior DRAM caching approaches, highlight
cases of bandwidth-inefficiency, and rigorously target remaining
bandwidth overheads to develop a bandwidth-efficient DRAM
cache suitable for DRAM + 3D-XPoint systems.

We start with a baseline hit-optimized Tag-Inside-Cacheline
(TIC) DRAM cache design [7], [11], [18]. A TIC design
organizes its DRAM cache as a direct-mapped cache with
tags stored inside each cacheline, such that one access can
retrieve both tag and data. TIC has good hit-latency, as it can
service cache hits in one DRAM access. However, TIC incurs
bandwidth overhead on cache misses as it needs to probe the
tag in DRAM in order to determine a miss. This approach
of trading miss-bandwidth for hit-latency has been proven
effective in situations where the cache has its own dedicated
access channel, such as the HBM+DRAM hybrid memory in
Intel’s Knights Landing [11]. However, in a channel-sharing
setup, the miss probe bandwidth directly consumes available
main memory bandwidth, resulting in bandwidth inefficiency.
As we show in Figure 1(b), there is a 14% performance gap
between TIC and an idealized Tag-In-SRAM approach.

An alternative approach to DRAM cache design is a miss-
optimized Tag-Outside-Cacheline (TOC) design [8], [12], [13].
A TOC design stores tags of multiple cachelines together in

3D-XPoint || 3D-XPoint

DRAM %:;
Channel Channel

CPU Chip

DRAM

(a) Channel-Sharing Hybrid Memory

1.20
1.10
1.00
0.90
0.80
0.70
0.60

Speedup w.r.t
Tag Inside Cacheline

(b) Performance of DRAM Cache Organizations

Fig. 1. (a) Channel-Sharing Hybrid Memory, and (b) Performance of hit-optimized Tag-Inside-Cacheline (TIC) [7], miss-optimized Tag-Oustide-Cacheline

(TOC) [8], and idealized Tag-In-SRAM, normalized to TIC.

a tag-only-line, such that one access to a tag-line can obtain
information for multiple cachelines at once. We can bring in
these bundles of tags as needed, and cache them in a small
tag/metadata cache (e.g., 32KB SRAM) [8]. If the metadata
cache has high hit-rate, TOC can service most hits with one
DRAM access, and misses to clean lines without a DRAM
access. However, if the metadata cache has low hit-rate, TOC
may need two accesses to service a hit, and one access to
service a miss. As such, TOC consumes lower bandwidth on
misses than TIC; however, it consumes higher bandwidth on
hits due to separate tag and data read. Overall, as shown in
Figure 1(b), TOC approach performs worse than TIC due to
bandwidth overheads.

We notice that TIC is good for hits, while TOC is good
for misses — one can perhaps combine both approaches to get
both good hit and miss bandwidth. Fortunately, it is cheap to
provision both metadata at once: TIC uses spare ECC bits [11],
and TOC needs to dedicate only 1.5% of DRAM cache capacity
to store metadata and a 32KB SRAM for a tag/metadata
cache [8]. To decide when to use TOC or TIC, one can employ
a hit/miss predictor [7] that uses TIC for likely hits and TOC for
likely misses. We call this proposal that provisions both TIC and
TOC metadata as TicToc. Unfortunately, we find that naively
combining TIC and TOC in fact leads to performance worse
than TIC by itself. This is because maintaining and updating
TOC metadata bits consumes significant DRAM bandwidth.
In order for TicToc to be effective, we need mechanisms to
reduce TOC maintenance bandwidth.

TOC incurs bandwidth overheads for the following three
cases: (i) tag-check on hits, (ii) tag-update on installs, and (iii)
dirty-bit-update on writebacks. Hit overhead is easily mitigated
by additionally storing TIC metadata in TicToc. Tag updates are
generally inexpensive because they occur at miss time, and miss
traffic usually has good spatial locality and therefore a high
metadata-cache hit-rate. Dirty-bit updates, however, remain
costly because they are carried out when dirty lines are evicted
from an earlier level of cache. Such evictions have poor access
locality and therefore low metadata-cache hit-rates. Hence, we
identify dirty bit updates as the most significant bandwidth
overhead for TicToc.

To reduce dirty data tracking costs for TOC, we target the
following two cases: initial write to a cache line, and repeated
writes to the same cache line. For repeated writes, we propose
to store a DRAM Cache Dirtiness bit alongside the line in an

earlier level of cache, to track the current dirty status of the
line in the DRAM cache. On a writeback to DRAM cache,
we need to update the TOC metadata only if the line in the
DRAM cache has changed from clean to dirty. However, many
workloads write to lines only once. For such workloads, we
propose Preemptive Dirty Marking that predicts likely-to-be-
written cache lines and proactively marks those lines as dirty
in the TOC at install time. This avoids needing to update dirty
information at eviction time, thereby avoiding metadata-cache
misses. We develop a PC-based Write Predictor that is 92%
accurate for our Preemptive Dirty Marking.

Even after solving for hit and miss bandwidth, when data has
poor reuse, installing lines and updating TOC tag can become a
major source of bandwidth overhead. To mitigate that problem,
we develop a Write-Aware Bypassing technique that reduces
install and tag-update bandwidth, without increasing writes to
write-constrained 3D-XPoint.

Overall our paper makes the following contributions:
Contribution-1: This paper evaluates and rigorously targets
the bandwidth overheads of prior DRAM-cache organizations.
We find that we can combine two tag-storage methods with
a TicToc organization to obtain both good hit and good miss
paths. However, such an approach suffers significant bandwidth
cost to maintain TOC dirty information on writes.

Contribution-2: We develop two techniques to reduce the cost
of tracking dirty information. DRAM Cache Dirtiness Bit targets
reducing cost of dirty-bit updates for repeated writes to the
same location, via maintaining DRAM cache dirty information
alongside the line in an earlier level of cache. And, Preemptive
Dirty Marking targets reducing cost of the initial dirty-bit
update to a location, via predicting which lines are likely to
be written to (with our Signature-based Write Predictor) and
preemptively setting the dirty-bit.

Contribution-3: To reduce install bandwidth while not in-
creasing 3D-XPoint write traffic, we develop a Write-Aware
Bypass technique. This technique bypasses most clean lines by
default to save install bandwidth. And, it installs most dirty and
predicted write-likely lines to buffer writes to write-constrained
3D-XPoint.

Overall, our proposed TicToc organization, enables 10%
speedup over TIC baseline, nearing the 14% speedup of an
idealized Tag-In-SRAM approach, while needing significantly
less SRAM storage (34 KB vs. 64 MB).

(a) Tag-In-SRAM organization

EEENENENENERENN

TNHIT: DATAOUT

—

(b) Tag-Inside-Cacheline organization
ECC+TAG+D(8B)

DATA (64B)

T™HIT: DATAOUT MISS: DATAOUT+READMEM

(c) Tag-Outside-Cacheline organization

Full SRAM Tag+Dirty Store (MBs)
DRAM ARRAY — Hit_____
ADDR
_ IVMISS: READMEM
ADDR
T HIEEENNENENEEEER
DRAM ROW SRAM Metadata Cache (KBs)
ADDR Tag+Dirty Storé ~ <,
Missi

MISSTTAGFETCH+READMEM

“MIT: TAGFETCH+DATAOUT

Fig. 2. DRAM cache org and flow: (a) idealized Tag-In-SRAM, (b) hit-optimized Tag-Inside-Cacheline [7], and (c) miss-optimized Tag-Outside-Cacheline [8].

II. BACKGROUND AND MOTIVATION

DRAM caches are important for enabling heterogeneous
memory systems to have the effective latency and bandwidth
of one memory technology, and the capacity of another. It is
desirable to organize DRAM caches at the granularity of a
cache line to efficiently utilize cache capacity, and to minimize
the consumption of main memory bandwidth [10]. A key
challenge in designing such large line-granularity caches is
deciding where to store the tag and dirty-bit metadata. For
a moderately-sized 4GB DRAM cache with 64B lines, there
would be 64 million lines. Even if each metadata required 8 bits
(6 tag, 1 dirty, 1 valid bit), this would result in 64MB storage for
metadata. Next, we discuss different options for DRAM cache
metadata management, and their impact on SRAM storage cost
and bandwidth consumption.

TABLE I
BANDWIDTH OF DRAM CACHES — pIs METADATA-CACHE MISS RATIO

Organization SRAM TIC TOC

(SRAM Cost) |(>20MB)|(<1KB)|(~32KB)
Hit 1 1 1+p
Miss + Evict-Clean 0 1 0+p
Miss + Evict-Dirty 1 1 1+p
Writeback 1 1 1+p

A. Tag In SRAM

A costly method to design high performance DRAM caches
is to maintain all of the tag and dirty bits in on-chip SRAM,
and query the on-chip SRAM metadata to determine hit or
miss, in a Tag-In-SRAM approach, shown in Figure 2(a). Such
an approach would require 64MB of SRAM for a 4GB cache
(>20MB with sectoring [10], [19]). Table I shows the DRAM
bandwidth consumption for such an approach. SRAM metadata
is queried first to determine hit or miss. A hit can be serviced
with one DRAM access to data. A miss can be serviced without
a DRAM access to data, unless installing the new line evicts
a dirty line. A write needs one DRAM access. Such a design
represents the minimum DRAM bandwidth needed for DRAM
cache maintenance, and an upper-bound for performance. We
aim to achieve Tag-In-SRAM performance at low SRAM cost.

B. Tag Inside Cacheline

To reduce SRAM storage costs, one could store tags inside
each line in DRAM [7], [11], [18] in a Tag-Inside-Cacheline
(TIC) approach, shown in Figure 2(b). TIC optimizes for hit-
latency by using a direct-mapped design and storing tag inside
each data-line such that one access can retrieve both tag and

data. Direct-mapped organization enables the controller to know
which location to access, without waiting for tags.

Table I shows the bandwidth of such an approach. Hits are
serviced with one DRAM access that retrieves both tag and data.
However, misses also need to access tag in DRAM. As such,
TIC is effective for hit-latency, but consumes extra bandwidth
on misses. This approach of trading miss-bandwidth for hit-
latency has been proven effective in commercial products [11],
and, as such, we use the TIC organization [7] as our baseline.

Setup: We store metadata alongside data in unused ECC
bits similar to Intel’s Knights Landing [11]. TIC additionally
employs a <1KB SRAM hit-miss predictor to guide when
to access cache+memory either in a parallel or serial manner.
We include bandwidth-reducing enhancements from Chou et
al. [18], such as DCP to reduce writeback probe.

C. Tag Outside Cacheline

Another option with reduced SRAM storage costs, is to store
metadata lines in a separate area of DRAM and bring them
in as needed in a Tag-Outside-Cacheline (TOC) [8], [12], [13]
approach, shown in Figure 2(c). To determine hit or miss, TOC
first accesses a metadata line to get tag+dirty information for
the requested data line, then routes the request appropriately to
DRAM cache or to memory. Of note, each of these metadata
lines actually stores metadata of several adjacent data lines.
An enhanced design [8] caches these metadata lines in a small
metadata cache, to amortize metadata lookup. Table I shows
the bandwidth consumption of such an approach. In case of
a metadata-cache hit, TOC performs similar to idealized Tag-
In-SRAM. But, in case of a metadata-cache miss, TOC needs
additional bandwidth to access the metadata. Overall, TOC has
the potential for reducing miss bandwidth, but can suffer from
significant bandwidth overhead when the metadata-cache has
poor hit rate (due to poor spatial locality).

Setup: We assume 1-byte metadata (6 tag, 1 dirty, 1 valid
bits), and 64 tags stored in each metadata entry. The metadata
are stored in a separate part of DRAM, consisting of 64MB out
of the 4GB DRAM capacity. Recently accessed metadata are
stored in a 512-entry metadata cache, which requires 32KB of
SRAM. We employ a direct-mapped organization and a hit-miss
predictor [7] for latency and bandwidth considerations.

D. Insight: Combine Metadata Approaches

The TIC approach has good hit-latency, but suffers from
extra miss bandwidth. Whereas, the TOC approach has good

miss bandwidth but incurs extra hit bandwidth. Our insight is
that if one could use TIC for hits and TOC for misses, then one
could potentially achieve both good hit and miss bandwidth.
We note that provisioning metadata for both TIC and TOC
is relatively inexpensive: TIC simply uses spare ECC bits [11],
and TOC needs to dedicate only ~1.5% of DRAM cache
capacity to store metadata lines and employs 32KB SRAM for
its metadata cache [8]. However, we need an effective design
that can use TIC for hits and TOC for misses. In addition, we
need to solve for TOC bandwidth costs as such a combined
proposal still needs significant bandwidth to maintain TOC tag
and dirty metadata. We discuss methodology before design.

III. METHODOLOGY
A. Framework and Configuration

We use USIMM [20], an x86 simulator with detailed memory
system model. We extend USIMM to include a DRAM cache.
Table II shows the configuration used in our study. We assume
a four-level cache hierarchy (L1, L2, L3 being on-chip SRAM
caches and L4 being off-chip DRAM cache). All caches use
64B line size. The baseline L4 is a 4GB DRAM-cache [11],
which is direct-mapped and places tags with data in unused
ECC bits. DRAM cache parameters are based on DDR4
DRAM [15]. The main memory is based on 3D-XPoint [1],
[2], [21]: the read latency is ~6X, the write latency is ~24X

that of DRAM, and there are 64 rowbuffers each 256B in size.

TABLE 11
SYSTEM CONFIGURATION

Processors 8 cores; 3.0GHz, 4-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 4GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus, shared

Aggregate Bandwidth 16 GB/s, shared with Memory
tCAS-tRCD-tRP-tRAS | 13-13-13-30 ns
Main Memory (3D XPoint)

Capacity 64GB

Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus, shared
Aggregate Bandwidth 16 GB/s, shared with DRAM
tCAS-tRCD-tRP 4-80-0 ns

tRAS-tWR 96-320 ns

B. Workloads

We use a representative slice of 2-billion instructions selected
by PinPoints [22], from benchmark suites that include SPEC
2006 [23] and GAP [24]. For SPEC, we pick a subset of high
memory intensity workloads that have at least 2 L3 misses
per thousand instructions (MPKI). The evaluations execute
benchmarks in rate mode, where all eight cores execute the
same benchmark. In addition to rate-mode workloads, we also
evaluate 4 mixed workloads, which are created by randomly
choosing 8 of the 17 SPEC workloads. Table III shows L3
miss rates, and memory footprints for the 8-core rate-mode
workloads in our study. We perform timing simulation until
each benchmark in a workload executes at least 2 billion
instructions. We use weighted speedup to measure aggregate
performance of the workload normalized to the baseline and
report geometric mean for the average speedup across all the
17 workloads (11 SPEC, 2 GAP, 4 MIX).

TABLE III
WORKLOAD CHARACTERISTICS
[Suite [Workload | L3 MPKI [Footprint

mcf 101.14 13.4 GB

Ibm 49.3 32 GB

soplex 353 1.8 GB

libq 30.1 256 MB

gems 29.1 6.4 GB

SPEC omnet 29.0 1.2 GB
wrf 104 1.1 GB

gcc 7.6 1.5 GB

xalanc 74 1.5 GB

zeus 7.0 1.6 GB

cactus 6.5 2.6 GB

cc twitter 116.8 9.3 GB

GAP I — twitter | 1266 | 153 GB

IV. TicToc DESIGN

We want the hit-path of TIC, the miss-path of TOC, all
without the cost to maintain TOC metadata. This section
is organized as follows: we describe how to provision and
effectively utilize both TIC and TOC, describe how to reduce
TOC maintenance cost, and show effectiveness of design.

A. TicToc Metadata Organization

We propose TicToc, a metadata organization that combines
the benefits of TIC and TOC DRAM cache designs. Figure 3
shows the metadata organization of our TicToc design. TicToc
provisions TIC metadata — tag-bits and dirty-bit are stored
inside the cacheline in unused ECC bits, similar to commercial
designs [11]. TicToc also provisions TOC metadata — metadata
is stored in dedicated metadata lines, taking up 1.5% of
DRAM capacity, and cached in a 32KB on-chip metadata
cache. While provisioning both TIC and TOC metadata is
cheap, the complexity lies in using TIC and TOC metadata
effectively to save on bandwidth for hits, misses, and writes.

TicToc Metadata Organization

Pred Hit

Hit / Miss Prediction
Pred Miss

ADDR
TIC Metadata

ECC+TAG+D(8B)
DATA (64B)

Metadata Cache

A DD D|DDD DD

MISSYREADMEM+TAGFETCH “HIT: DATAOUT

Fig. 3. TicToc Organization queries hit/miss predictor to use TIC for hits and
TOC for misses. TicToc enables good hit latency, and good hit/miss bandwidth.

1) TicToc Operation: Figure 3 shows the operation of TicToc.
We want to use TIC metadata for hits and TOC metadata
for misses. Our key insight is that one can use hit/miss
prediction [7], [25] to help guide when to use which metadata.
Hit/miss predictors have previously been used to hide the
serialization latency that can occur from waiting on last-level
cache miss response before accessing main memory. A hit/miss
predictor works by predicting which cache accesses are likely to
miss, and sending both cache and memory requests in parallel
to avoid serialization. We leverage a hit/miss predictor [7]
to guide TicToc to use TIC metadata on likely-hit and TOC
metadata on likely-miss. The common result: a hit is serviced
in one cache access (TIC path), a miss with clean eviction
directly goes to memory (TOC path), and a miss with dirty
eviction goes to cache and memory (TIC path).

2) TicToc Effectiveness: To analyze effectiveness of TicToc,
Figure 4 and Figure 5 show proportion of channel bandwidth
used for useful operations, install operations, and assorted
maintenance operations, for baseline TIC and proposed TicToc.
Useful operations include 3D-XPoint Read and Write, and
DRAM Cache Hit and Writeback. Install operations refer
to cache installs, which are important for improving hit-
rate but incur bandwidth to write the line to DRAM. Lastly,
Maintenance operations refer to bandwidth-wasting operations
used to confirm whether a line is cache resident or not: miss
probes for TIC, and accessing/updating TOC metadata for
TOC.

< mmmm Useful BW 2 Install mmm Miss Probe
g 100
S c
£ 075
Q.
& E 0.50
56 0.25
EO
5 0.00 o . —
2 RN (ORR N < >
A QORI) 0@0 %_\g@ +2 o,bo & & vé\%

Fig. 4. Breakdown of bus bandwidth consumption for TIC organization [7].
Workloads with low hit-rate waste significant bandwidth to confirm misses.

As expected, Figure 4 shows that TIC wastes bandwidth
when probing the DRAM cache to confirm misses. The
proposed TicToc can utilize TOC to reduce such miss probes.
However, Figure 5 shows that TicToc actually fares worse due
to needing bandwidth to maintain TOC tag and TOC dirty-bit.

TOC tag-updates happen when a new line is installed in the
cache on a miss. Note that a large fraction of misses happen
when a workload starts accessing a new page. Therefore, misses
generally have high spatial locality. In such cases, our small
metadata cache does a good job in amortizing metadata updates.

TOC dirty-bit-updates, on the other hand, occur upon eviction
of a dirty line from an earlier level of cache. Evictions generally
have poor spatial and temporal locality; therefore, eviction-
related TOC dirty-bit updates often miss in the metadata cache
and consume additional bandwidth.

< mmm Useful BW = Install mmm Tag-Update mmm Dirty-Update
g 100
S c
£2 075
Qo
& E 050
ﬁé 0.25
£
] 0.00 Q {\ O O P & & _@\ '
P4 @& @ F ¥ P S 2
é‘ 3 SR A\ @ q_@@ 42 0’2’6\ & & ‘?@QJ
Fig. 5. Breakdown of bus bandwidth consumption for proposed TicToc

organization. Write-heavy workloads waste bandwidth updating TOC dirty-bit.

B. Reducing Dirty-Bit Tracking Costs

The main source of bandwidth overhead of TicToc is
maintaining the dirty-bit information in TOC metadata. To
mitigate this overhead, we need effective methods to cut down
dirty bit updates. We explain the difficulty in doing that before
describing our solution.

1) Understanding Dirty-bit Updates: The dirty-bit update
procedure starts upon an eviction of a dirty line from L3. First,
we need to probe the tag&dirty-bit of the destination set of

& = access = (TOC Dirty-bit | TIC Dirty-bit). C is clean, D is dirty

(a) Write Path 1 (b) Miss + Install Path

Install Writeback T'\(;:i:n'lient::?;a I Miss/WB Probe Mem Read Install
e :T|C 0 -MemR -CacheW
|

TCTOC.).QD (DI) Marking lines dirty I TicToc,
+PDM) ". at install saves " |k+pppm) QD 'MemR |

Predicted-Dirty” metadata bandwidthy But overpredicting dirty lines
increases miss B
Fig. 6. Bandwidth for a typical (a) write path and (b) miss+install

path. TicToc+PDM adds “Predicted-Dirty” state, where TOC dirty-bit is
installed as dirty but TIC dirty-bit is installed as clean. Installing lines in
Pred-Dirty can (a) save TOC dirty-bit update, but (b) increase miss cost.
Using Pred-Dirty only for write-likely lines can save bandwidth

the L4 cache to see if we can directly overwrite the L4 cache.
In case of a tag mismatch, one would first need to evict (and
potentially write back) the conflicting L4 line. However, the
common case is that the line evicted from L3 is resident in L4
cache. Chou et al. [18] eliminates the tag-check for this case
by maintaining a DRAM Cache Presence bit (DCP) along side
every L3 line. If the DCP bit is set, the line is present in L4
and can be safely overwritten. Second, the data evicted from
L3 is written to the L4. Third, we need to update any pertinent
tag and dirty-bit metadata. The tag-update for TIC and TOC is
uncommon, as typically L3 writebacks hit in L4. The dirty-bit-
update for TIC is sent along with L4 install, therefore it does not
incur bandwidth overhead. However, Figure 6(a)[TOC,TicToc]
shows that the dirty-bit update for TOC often needs to be
separately queried and potentially updated, which results in
bandwidth overhead.

The overhead of dirty-bit updates is comprised of two parts:
repeated TOC dirty-bit checks for already-dirty lines, and the
initial TOC dirty-bit update to mark clean-to-dirty transition.
We target these two scenarios with two techniques.

2) Reducing Repeated TOC Dirty-bit Checks: Our key
insight is as follows: if one knew that a line is already marked
dirty in the L4 cache, then there is no need to access/update
the L4 dirty status on L3 writebacks. In presence of such
information, the dirty bit check/update cost would be incurred
only when the L4 line status changes from clean to dirty.

DRAM Cache Dirtiness: To enable this optimization, we
propose to additionally store a DRAM Cache Dirtiness bit
(DCD) alongside the DCP [18] next to each line in the L3
cache. While DCP tracks whether the L3 line is also resident
in L4, DCD stores the dirty status of that line in L4. We set the
DCD, when a dirty line is read from L4. On an L3 writeback,
we check both the DCP and DCD. If both DCD and DCP are
set, we know the line is resident in L4 and already marked dirty
in the TOC metadata — tag and dirty-bit will be unchanged and
we do not need to fetch TOC. Hence, DCP reduces tag checks
when tag will not be modified, and DCD reduces dirty-bit
checks when dirty-bit will not be modified.

Figure 7 shows that DCD reduces dirty-bit updates for many
workloads that repeatedly write to same lines (e.g., omnet,
soplex). However, there are other write-intensive workloads
(e.g., zeusmp) where most L4 lines are written only once — we
want to reduce dirty-bit updates for those workloads as well.

= TOC — TicToc

1.60

mm TicToc+DCD

=== TicToc+PDM = Tag-In-SRAM

1.40
%1 .20
S
%000
20.
9 0.60

0.40

0.20

S o@

&

N
o
ROMEIRN &

Fig. 7. Speedup of TOC, proposed TicToc, TicToc with DRAM Cache Dirtiness bit, TicToc with Preemptive Dirty Marking (PDM), ar);d ideal Tag-In-SRAM,

normalized to TIC. TicToc+PDM performs near ideal for most workloads.

3) Reducing Initial TOC Dirty-bit Update: For workloads
that write-once to lines, we make the following key observation:
if the dirty bit in the TOC tag is pre-emptively marked at line
install time, then one can avoid the TOC clean-to-dirty update
that would have been incurred at L3 eviction time. We call
this approach Preemptive Dirty Marking (PDM).

Preemptive Dirty Marking: Figure 6 shows the typical write
and miss+install bandwidth for TicToc and the approach that
preemptively marks TOC dirty-bit. Figure 6(a)[TicToc] shows
that a typical write path needs 4 accesses: a normal line would
incur clean install, a write, TOC dirty-bit read and TOC dirty-
bit write. Figure 6(a)[TicToc+PDM] shows that PDM can limit
writes to 2 accesses. We add a new dirty state of “Predicted-
Dirty,” where TOC dirty-bit is marked as dirty but TIC dirty-bit
is marked as clean. If we install lines in “Predicted-Dirty” with
PDM, the TOC dirty-bit is set at install time, and the TOC
clean-to-dirty update can be avoided.

However, while early marking can save bandwidth on
writes, PDM incurs a different problem on miss path. Fig-
ure 6(b)[TicToc] shows that a typical miss+install path needs
2 accesses: TOC metadata informs residence and dirtiness so
that miss+install can be accomplished with a memory read and
a DRAM cache install. However, Figure 6(b)[TicToc+PDM]
shows that PDM can increase miss+install to 3 accesses. For
instance, if a clean line has been preemptively marked as dirty
in the TOC dirty-bit, we would need to read the DRAM cache
line in preparation for eviction of a dirty line, thereby adding
an extra DRAM read. Thus, being aggressive in marking lines
as “Predicted-Dirty” with PDM will save write bandwidth, but
it can come at the cost of increasing miss cost for clean lines.

Thus, if we install a write-likely line as clean, it will pay
additional miss cost [TicToc] — if we install a write-unlikely
line as “Predicted-Dirty,” it will pay additional cost to update
TOC dirty bit [TicToc+PDM]. To address these costs, we make
the following key insight: if we can accurately predict write
behavior at install time and use PDM only for write-likely
lines, we can reduce both TOC dirty bit update and TIC miss
probe bandwidth.

Write Predictor: For accurate write-classification for PDM,
we develop a Signature-based Write Predictor (SWP) to predict
likelihood that an incoming line will be written. SWP employs
a sampling PC-based prediction, inspired by SHiP [26], [27].
Figure 8 shows structures and operation of SWP. SWP consists
of write-behavior observation, learning, and prediction.
Observation is done by maintaining signature (installing-PC
in this case) and a written-to bit inside the metadata of each

Sig = PC%(1<<10)
Cache

Counters

IncomingLineA
[~— Sig

Predict-Clean _ |
(Init Dirty=0) 000

sigw

Predict-Dirty oN
(Init Dirty=1) """ zero
CTR

Fig. 8. Signature-based Write Predictor learns which sigs correspond to
eventual write, to aid PDM technique.

IncomingLineB
[~ Sig

line (10 bits added metadata for the 1% sampled lines, stored in
TOC-metadata). Signature is set at install-time, and written-to
bit is updated on first write to line. On eviction of a sampled
line, we get information that this PC installed a line that was
either written-to or never written-to in its lifetime in the cache.

Learning is accomplished by storing observed write-behavior
into a PC-indexed table of saturating 3-bit counters. On
eviction of a line that has the written-to bit set, the counter
corresponding to installing-PC is incremented. On eviction
of a line that does not have written-to bit set, the counter
corresponding to installing-PC is decremented. This counter
table becomes a PC-indexed table of write-behavior.

Prediction is then simple — on install, the installing-PC is
used to index into the counter-table to provide a write-likely
or write-unlikely prediction. If the counter is non-zero, this
PC has previously seen write behavior and the incoming line
should be installed in “Predicted-Dirty” state to avoid TOC
clean-to-dirty update. If the counter is zero, then this PC has
not seen much write behavior and the incoming line should
be installed as clean to avoid miss/writeback probes.

Accuracy of Write Predictor: Effectiveness of PDM is
contingent on good prediction of write-likely (dirty) lines to
reduce dirty-bit update cost, and write-unlikely (clean) lines to
reduce miss-probe cost. Figure 9 shows fraction of lines that
are predicted clean or dirty, and actually end up clean or dirty.
SWP has a high prediction accuracy (92% on average), and
enables PDM to save most dirty-update and miss-probe costs.
4) Effectiveness of Dirty-Tracking Optimizations:
Performance: Figure 7 shows the speedup of TOC, our
TicToc, TicToc with DCD, TicToc with PDM, and idealized
Tag-In-SRAM, normalized to TIC approach. TOC performs
poorly due to poor metadata-cache hit-rate, for 30% slowdown.
TicToc reduces hit bandwidth, for 22% slowdown. Adding
DCD to TicToc avoids dirty-bit tracking for repeated writes,
bringing performance on par with TIC. Adding PDM further

mm PDirty,ADirty
-~ 100

mm PClean,ADirty = PClean,AClean mm PDirty,AClean

~
o

Write-Pred Acc (%
n [
(6] o

&

5 &
@Q\OQ\&O@(\%@

OQQ

o & & o
g\,b,&oé 0

&
&)

Fig. 9. Accuracy of Write Prediction (P=predicted, A=actual). Low
PClean/ADirty and PDirty/AClean reflects accurate write-behavior prediction

reduces bandwidth overhead by avoiding the initial dirty-
bit updates. Notably, TicToc+PDM achieves near ideal Tag-
In-SRAM performance for most workloads, resulting in a
10% average speedup (excluding the worst-case mcf). Some
workloads, however, exhibit significant gap to ideal. We analyze
bandwidth consumption to gain insight into this problem.

mmm Useful BW T Install
1.00

0.75

0.50

0.25

0.00

mmm Tag-Update mmmm Dirty-Update

Normalized Bandwidth
Consumption

@\O‘Q(}@\‘\O @& § é\e”’
v

Fig. 10. Breakdown of bus bandwidth for dirty-optimized TicToc. Dirty-bit
updates are greatly reduced.

Bandwidth: Figure 10 shows the bandwidth breakdown of
TicToc + dirty-bit optimizations. Overall, our approach reduces
nearly all of the TOC dirty-bit update bandwidth (decreased
fraction from 10% to 0.8%) and frees up bandwidth for useful
reads and writes. However, we note that installing lines and
updating the TOC-tag now becomes the main source of DRAM
cache bandwidth overhead. We target this overhead next.

V. REDUCING INSTALL COST WITH WRITE-AWARE BYPASS

When data has poor reuse, installing lines and updating TOC
metadata waste bandwidth. In such cases, employing a DRAM
cache could actually hurt performance, as the line install and
tag maintenance operations needlessly steal bus bandwidth from
memory accesses. Therefore, we need effective mechanisms
to reduce the cost of unnecessary installs.

Insight — Write-Aware Bypassing: Prior work has proposed
cache bypassing [18], [28], [29] to avoid unnecessary installs.
On an L3 miss, one can bypass the DRAM cache and install
the line only in L1/L2/L3 caches, thereby saving the DRAM
cache install bandwidth. However, bypassing must be done
selectively and carefully, otherwise it may increase writes to
3DXPoint and degrade performance, endurance, and power.

A. Design of Write-Aware Bypassing

Figure 11 shows our Write-Aware Bypassing policy. We
start with the default 90%-bypass policy proposed in [18],
which bypasses 90% of all installs. While such aggressive
bypassing was shown to work well for an HBM+DDR hybrid
memory [18], we note that it can increase write traffic to the
write-constrained 3D-XPoint memory. To address this problem,
we add write awareness to the bypass policy. We augment the

—

Writeback » Always-Install
Miss

reduce 3D-XPoint writes)

Pred-Dirty
Write-
Predictor

Demand

90%-Bypass
Miss ooyp

Pred-Clean (save install/tag BW)

Fig. 11. Write-Aware Bypass. Reduce install bandwidth by bypassing most
write-unlikely lines. Reduce 3D-XPoint writes by installing write-likely lines.

default bypass policy with a write-allocate condition, which
requires that dirty L3 evictions would always install DRAM
cache lines. Thus, the DRAM cache would act as a write buffer
for 3D-XPoint memory. Unfortunately, the drawback of such
an approach is that installing DRAM cache lines at the time
of L3 evictions may result in significant tag-update costs. L3
evictions often have poor spatial locality, causing TOC tag
updates carried out at L3 eviction to exhibit poor metadata
cache hit rates and incur extra DRAM accesses.

To amortize the TOC tag-update cost of our write-allocate
policy, we propose Preemptive Write-Allocate, whereby we
also always-install write-likely lines (predicted with SWP).
Preemptive Write-Allocate enables our write-allocate installs
to happen at L3 miss time. Such installs have higher spatial
locality, resulting in more metadata cache hits and more
effective amortization of TOC metadata updates.

B. Effectiveness of Write-Aware Bypassing

Bandwidth: To understand the effectiveness of our install
and metadata-update reducing optimizations, we show the
bandwidth breakdown of our approach in Figure 12. Overall,
we find that install-reducing optimizations can eliminate nearly
all of the install bandwidth overheads and leave much more
bandwidth for useful reads and writes. In total, the combination
of our cache bandwidth reducing optimizations improves
fraction of bandwidth going to useful operations (servicing
reads / writes) from 70% to 90% on average.

< mmmm Useful BW —= Install mmmm Metadata
S _1.00
S c
£2 075
Q.
©E 050
o2
ﬁé 0.25
£
2 0.00 6\0& @ o> @ (\Q‘,\ ${\ S & P & @ ,§
AR S T Q+,§o 2 S g VSQ

Fig. 12. Breakdown of bus bandwidth for dirty-optimized TicToc w/ Write-
Aware Bypassing. Installs are mitigated.

Performance: Figure 13 shows the performance of TicToc
with dirty-optimizations, TicToc with 90%-bypass, TicToc with
90%-bypass and write-allocate, and TicToc with 90%-bypass
and preemptive write-allocate, relative to TIC.

3 TicToc mm +90% bypass =3 +Write-Allocate mm +Preeqp§ive Write-Allocate
2.20
2.00
1
B 1.40
8 1.20 | &
@ 1.00
0.80
0.60 @ & P P
& & RO Q
NI PSR +,§°° s S
Fig. 13. Speedup of T1cToc organization, adding 90%-bypass, axdding Write-

Allocate, and adding Preemptive Write-Allocate, relative to TIC approach.

TicToc with dirty-bit optimizations does well for most
workloads, with an average speedup of 4.2%, but can suffer for

workloads with poor spatial locality and low hit-rate (e.g., mcf).

TicToc with 90%-bypass reduces install and TOC tag-update
cost to improve speedup to 16.7%. Notably, the slowdown for
mcf is mitigated. TicToc with 90%-bypass and write-allocate

enables effective write-buffering to improve speedup to 20.6%.

Finally, TicToc with 90%-bypass and preemptive write-allocate
further amortizes TOC metadata-update (e.g., zeusmp and pr
twi) to improve speedup to 23.2%.

C. Putting it all together

This work targets all DRAM cache maintenance bandwidth
operations to achieve a bandwidth-efficient (>90% of channel
bandwidth to useful operations) and low SRAM storage
overhead (34KB) DRAM cache organization: TicToc improves
hit and miss bandwidth, DRAM Cache Dirtiness bit and
Preemptive Dirty Marking reduces dirty-bit-tracking bandwidth,
and Write-Aware Bypass reduces install and tag-tracking

bandwidth. TicToc enables 23.2% speedup with ~34KB SRAM.

VI. RESULTS AND DISCUSSION
A. Storage Requirements
We analyze the SRAM storage needs of TicToc organization.
TicToc requires structures from its component TIC and TOC
organizations. From TIC, we need ~1KB for PC-based hit/miss
prediction [7], and 1 bit alongside each L3 line for DRAM
Cache Presence bit to avoid tag-check for writes to resident

lines [18]. From TOC, we need 32KB for a metadata cache [8].

Specific to TicToc, we need 1 bit alongside each L3 line for
DRAM Cache Dirtiness, and ~1KB for our Signature-based

Write-Predictor (512 entries of 3-bit counters with 9-bit PC tag).

Our bypassing optimizations do not require additional space.
In total, TicToc needs 34KB SRAM storage in the memory
controller, with 2 bits alongside each L3 line.

TABLE IV
STORAGE REQUIREMENTS OF TICTOC

SRAM Storage |

[TicToc Component i

Hit-Miss Predictor [7] 1 KB
DRAM Cache Presence [18] 1-bit / L3-line

Metadata Cache [8] 32 KB
DRAM Cache Dirtiness 1-bit / L3-line

Signature-based Write Predictor 1 KB

[TicToc [[34KB + 2-bits/L3-line |

VII. RELATED WORK
A. Line-based DRAM Caches

In our work, we utilize and combine the two major types of
line-granularity DRAM cache designs: Tag-Inside-Cacheline
(TIC) and Tag-Outside-Cacheline (TOC) approaches.

TIC designs [7], [11], [18], [30], [31], [32] organize their
cache as direct-mapped and store tag inside the cacheline,
such that one access can retrieve both tag and data. Such
approaches are optimized for hits, but pay bandwidth to confirm
misses [7]. BEAR [18] proposes several enhancements to
reduce bandwidth cost of cache maintenance: we include its
DRAM Cache Presence bit that targets reducing write probe in

our baseline TIC design, we compare with Bandwidth-Aware
Bypass with 90%-bypass in Figure 13, but we do not include
Neighboring Tag Cache since current implementations cannot
obtain neighboring tag for free [11]. We use BEAR as our TIC
component of TicToc, and improve upon TIC miss-bandwidth
cost to enable a scalable bandwidth-efficient DRAM cache.
Associativity [31] enhancements can be easily incorporated.
TOC designs [8], [9], [12], [33], [34] store tags in a separate
area of the DRAM cache and fetch them as needed. Early
designs were highly associative and would need a serial tag-
data lookup [9]. Some enhancements used tag-prefetching [33]
or way-prediction [34] to avoid this serialized tag lookup.
Others used direct-mapped structure [8], [12] to avoid serialized
tag lookup, with one employing a tag cache [8] to reduce
bandwidth of tag lookup as well. We use Timber [8] as our
TOC component of TicToc, and improve upon TOC bandwidth
overhead to enable a scalable bandwidth-efficient DRAM cache.

B. Page-based DRAM Caches

Alternatively, one can use large-granularity DRAM caches to
amortize tag and metadata overhead, in hardware [10], [13] or
software [35], [36], [37], [38]. Hardware-based approaches have
bandwidth overheads similar to TOC designs. Software-based
approaches need OS support and are out of scope for our investi-
gation. Swap-based memory management techniques [39], [40],
[41], [42], [43] also exist, but have increased write cost due to
needing to write back clean pages (inefficient for 3D-XPoint).

C. On Reducing Dirty-bit Tracking

Tracking dirty-status of cachelines efficiently with low
SRAM storage is a known difficult problem. Many works limit
the amount of lines that can be kept dirty [25], [44], [45], [46],
to reduce SRAM storage needed to track dirty lines. However,
for our work, we target a DRAM + 3D-XPoint system, which is
often constrained by 3D-XPoint write bandwidth. Such mostly-
clean caching techniques hamper the ability for the DRAM
cache to act as an effective write buffer for 3D-XPoint — and
can cause slowdown. Our approach, on the other hand, does
not impose any write limitation and instead uses architectural
techniques (DCD+PDM) to reduce over 90% of the bandwidth
cost to track dirty information, with only 34KB of SRAM.

VIII. CONCLUSION

This paper investigates bandwidth-efficient DRAM caching
for hybrid DRAM + 3D-XPoint memories. Our proposal
combines two major approaches for DRAM cache design:
(1) a Tag-Inside-Cacheline (TIC) organization that optimizes
for hits by storing tag alongside data, and (2) a Tag-Outside-
Cacheline (TOC) organization that optimizes for misses by
storing tags from multiple data lines together in a tag-line.
We call this proposal TicToc. To enhance TicToc, we propose
three new optimizations in order to reduce the bandwidth
cost of updating and maintaining cache metadata. Together,
our evaluations show that our TicToc organization enables
10% speedup over the baseline TIC, nearing the 14% speedup
possible with an idealized DRAM cache design with 64MB of
SRAM tags, while needing only 34KB SRAM.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our colleagues from
the Memory Systems Lab for their critique and suggestions.
This work was supported, in part, by a grant from the
Semiconductor Research Center (SRC) and a gift from the
Intel corporation.

[1

—

[2

—

[3

[t

[4]

[5]

[6

=

[7]

[8

[t

[9]

[10]

(11]

[12]

[13]

(14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Intel and Micron, “A revolutionary breakthrough in memory technology,”
2015.

J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019.

A. Ilkbahar, “Intel© optane™ dc persistent memory operating modes
explained,” 2018. Accessed: 2019-03-20.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA ’09, (New York, NY, USA), pp. 24-33, ACM, 2009.

G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram and dram
main memory system,” in 2009 46th ACM/IEEE Design Automation
Conference, pp. 664-669, July 2009.

A. Bivens, P. Dube, M. Franceschini, J. Karidis, L. Lastras, and M. Tsao,
“Architectural design for next generation heterogeneous memory systems,”
in International Memory Workshop (IMW), 2010.

M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” in MICRO ’12, pp. 235-246, Dec 2012.
J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram cache
management,” IEEE CAL, vol. 11, pp. 61-64, July 2012.

G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked dram caches,” in MICRO ’11, (New York, NY,
USA), pp. 454464, ACM, 2011.

D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers:
Hit ratio, latency, or bandwidth? have it all with footprint cache,” in
ISCA 13, (New York, NY, USA), pp. 404415, ACM, 2013.

A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights landing: Second-
generation intel xeon phi product,” IEEE Micro, vol. 36, pp. 3446,
Mar 2016.

J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked
dram caches,” in ISCA ’13, 2013.

D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked dram cache,” in MICRO ’14, pp. 25-37,
IEEE, 2014.

J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.
JEDEC, DDR4 SPEC (JESD79-4), 2013.

ArsTechnica, “Intel’s crazy-fast 3d xpoint optane memory heads for ddr
slots (but with a catch),” 2018. Accessed: 2019-01-23.

M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava,
A. Rudoff, I. M. Steiner, B. Valentine, G. Vedaraman, and S. Vora,
“Cascade lake: Next generation intel xeon scalable processor,” IEEE
Micro, vol. 39, pp. 29-36, March 2019.

C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating
bandwidth bloat in gigascale dram caches,” in ISCA ’I15, (New York,
NY, USA), pp. 198-210, ACM, 2015.

J. B. Rothman and A. J. Smith, “Sector cache design and performance,”
in Proceedings 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), pp. 124-133, Aug 2000.

N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, 2012.
Intel, “Fact sheet: New intel architectures and technologies target
expanded market opportunities,” 2018. Accessed: 2019-03-20.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel itanium programs with
dynamic instrumentation,” in MICRO ’14, pp. 81-92, Dec 2004.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1-17, Sept. 2006.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015.

J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A
mostly-clean dram cache for effective hit speculation and self-balancing
dispatch,” in MICRO 12, pp. 247-257, IEEE, 2012.

C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in MICRO ’11, (New York, NY, USA), pp. 430-441, ACM,
2011.

V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++: Enhancing
signature-based hit predictor for improved cache performance,” in The
2nd Cache Replacement Championship (CRC-2 Workshop in ISCA '17),
2017.

M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Trans. Comput., vol. 57, pp. 433447, Apr.
2008.

H. Gao and C. Wilkerson, “A dueling segmented Iru replacement
algorithm with adaptive bypassing,” in JWAC 2010-1st JILP Worshop on
Computer Architecture Competitions: Cache Replacement Championship,
2010.

C. Chou, A. Jaleel, and M. K. Qureshi, “Candy: Enabling coherent
dram caches for multi-node systems,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1-13, Oct
2016.

V. Young, C. Chou, A. Jaleel, and M. K. Qureshi, “Accord: Enabling
associativity for gigascale dram caches by coordinating way-install and
way-prediction,” in ISCA ’18, pp. 328-339, June 2018.

V. Young, P. J. Nair, and M. K. Qureshi, “Dice: Compressing dram
caches for bandwidth and capacity,” in ISCA ’17, (New York, NY, USA),
pp. 627-638, ACM, 2017.

C.-C. Huang and V. Nagarajan, “Atcache: reducing dram cache latency
via a small sram tag cache,” in PACT ’14, pp. 51-60, ACM, 2014.

Z. Wang, D. A. Jimnez, T. Zhang, G. H. Loh, and Y. Xie, “Building a low
latency, highly associative dram cache with the buffered way predictor,”
in SBAC-PAD 16, pp. 109-117, Oct 2016.

Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless dram cache,” in ISCA ’15, (New York, NY,
USA), pp. 211-222, ACM, 2015.

H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, “Efficient
footprint caching for tagless dram caches,” in HPCA 16, pp. 237-248,
IEEE, 2016.

G. H Loh, N. Jayasena, J. Chung, S. K Reinhardt, M. O’Connor, and
K. McGrath, “Challenges in heterogeneous die-stacked and off-chip
memory systems,” in 3rd Workshop on SoCs, Heterogeneous Architectures
and Workloads (SHAW-3), 02 2012.

X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in MICRO 17, (New York, NY, USA), pp. 1-14, ACM, 2017.

C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory
organization with capacity of main memory and flexibility of hardware-
managed cache,” in MICRO ’14, (Washington, DC, USA), pp. 1-12,
IEEE Computer Society, 2014.

J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked dram as part of memory,”
in MICRO ’14, (Washington, DC, USA), pp. 13-24, IEEE Computer
Society, 2014.

J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “Silc-fm:
Subblocked interleaved cache-like flat memory organization,” in HPCA
’17, pp. 349-360, Feb 2017.

A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen,
“Mempod: A clustered architecture for efficient and scalable migration
in flat address space multi-level memories,” in HPCA 17, pp. 433-444,
Feb 2017.

A. Kokolis, “Pageseer: Using page walks to trigger page swaps in hybrid
memory systems,” HPCA '19, pp. 596-608, 2019.

C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan, “C3d:
Mitigating the numa bottleneck via coherent dram caches,” in MICRO
’16, pp. 1-12, Oct 2016.

I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt,
“Cache coherence for GPU architectures,” in HPCA ’13, 2013.

V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of multi-
gpu systems,” in MICRO ’18, October 2018.

	Introduction
	Background and Motivation
	Tag In SRAM
	Tag Inside Cacheline
	Tag Outside Cacheline
	Insight: Combine Metadata Approaches

	Methodology
	Framework and Configuration
	Workloads

	TicToc Design
	TicToc Metadata Organization
	TicToc Operation
	TicToc Effectiveness

	Reducing Dirty-Bit Tracking Costs
	Understanding Dirty-bit Updates
	Reducing Repeated TOC Dirty-bit Checks
	Reducing Initial TOC Dirty-bit Update
	Effectiveness of Dirty-Tracking Optimizations

	Reducing Install Cost With Write-Aware Bypass
	Design of Write-Aware Bypassing
	Effectiveness of Write-Aware Bypassing
	Putting it all together

	Results and Discussion
	Storage Requirements

	Related Work
	Line-based DRAM Caches
	Page-based DRAM Caches
	On Reducing Dirty-bit Tracking

	Conclusion
	References

