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Abstract—In-DRAM Rowhammer mitigation requires three
resources: space (to track aggressor rows), time (to perform mit-
igation), and energy (to refresh victim rows). An ideal in-DRAM
mitigation must minimize all three overheads. Recent randomized
trackers, such as MINT, can perform tracking with negligible
storage overheads. However, they perform mitigation proactively
and frequently, which incurs significant performance and energy
overheads at low thresholds. Recently, JEDEC introduced Per-
Row Activation Counters (PRAC) and ALERT Back Off (ABO)
protocol to obtain the time for mitigation reactively, as needed.
While PRAC+ABO minimizes the time and energy overheads of
mitigation, PRAC incurs significant changes to the DRAM array
and significant performance overhead (6.5% on average) due to
increased memory timings to update the PRAC counters. Our
goal is to develop an efficient in-DRAM mitigation that has low
storage, performance, and energy overheads.

Our paper proposes MIRZA, the first low-cost reactive in-
DRAM mitigation. MIRZA relies on MINT to track aggressor
rows. However, instead of proactively doing mitigation at regular
intervals (via REF or RFM), MIRZA uses ABO to reactively
obtain the time required for mitigation. To avoid frequent ABO,
MIRZA employs Coarse-Grained Filtering to disable mitigations
if the activation count is below a certain Filtering Threshold. To
tolerate a threshold of 1K, MIRZA requires a storage overhead
of only 196 bytes of SRAM per bank. Compared to MINT,
MIRZA reduces the mitigation overheads by 28.5x. Compared
to PRAC, MIRZA has 45x lower area overheads and negligible
slowdown (0.36% average slowdown vs. 6.5% for PRAC).

I. INTRODUCTION

Rowhammer is a disturbance error that occurs when rapid
activations of a DRAM row cause bit-flips in neighboring
rows [20]. The Rowhammer Threshold (TRH), which is the
number of activations required to induce a bit-flip, has con-
tinued to decrease, lowering from 140K [20] (in 2014) to
4.8K [17] (in 2020). Due to the lack of publicly available
characterization data for DDR5 modules, the current and future
trend of the Rowhammer threshold is less clear. However,
research on architectural solutions against lower Rowhammer
thresholds is still vital as it can mitigate the risk posed by
low-threshold devices if and when such devices arrive. This
is a preferable approach rather than waiting for devices to be
attack and then develop a design for vulnerable devices.

Typical mitigation for Rowhammer relies on tracking
to identify the aggressor rows and refreshing the victim
rows [10]. We focus on in-DRAM mitigations, as they can
solve Rowhammer transparently. In-DRAM mitigation re-

quires three types of resources: storage for tracking, and time
and energy for performing mitigation.

The Storage Overhead: In-DRAM mitigation requires stor-
age for tracking aggressor rows. DDR4 modules were
equipped with Targeted Row Refresh (TRR) tracker with 4-
28 entries [12] per bank. However, TRR is not secure and can
be easily broken with specialized patterns [7], [12]. Optimal
in-DRAM trackers, such as Mithril [19] and ProTRR [24],
provide sufficient entries to track all aggressor rows for a given
threshold, however, they require significant storage overheads
(for example, 4.5KB CAM per bank at TRH of 1K). Recent
works, such as PrIDE [11] and MINT [35], propose principled
randomized in-DRAM trackers that can securely mitigate
Rowhammer while incurring negligible SRAM overheads. For
example, MINT is a single-entry tracker that selects one
activated row (using uniform random sampling) between two
refreshes (see Figure 2 for more details). Unfortunately, ran-
domized Rowhammer solutions require frequent mitigations.

The Mitigation Overhead: In-DRAM trackers require time
to perform mitigative refreshes on the victim rows associated
to an aggressor row. To transparently perform victim refresh,
in-DRAM mitigation is typically performed by borrowing the
time reserved for performing demand refresh (REF). Borrow-
ing time from REF takes away the time the DRAM chip has to
perform regular refreshes (mitigating a row takes 280ns [28]
and REF time is 410ns). Therefore, existing in-DRAM trackers
mitigate one aggressor row every 4 to 8 REF [10].

Conventional in-DRAM trackers perform mitigation proac-
tively at each mitigation opportunity, even if no row has in-
curred TRH activations. The threshold tolerated by in-DRAM
trackers depends on the rate of mitigation. For example, while
MINT can tolerate a threshold of 1.5K if one aggressor row
is mitigated at every REF, for realistic mitigation rates of one
per 4 to 8 REF, the tolerated threshold increases to 6K to 12K.

To reduce the threshold tolerated by in-DRAM trackers,
DDR5 introduced Refresh Management (RFM), which counts
the number of activations per bank and proactively stalls the
Memory Controller (MC) and allows DRAM chips additional
time for mitigation. As RFM stalls the memory system,
frequent use of RFM causes a slowdown and incurs energy
overhead, as each mitigation typically requires a refresh of
multiple victim rows. Our evaluations show that such proactive
mitigations increase the overall DRAM refresh energy by 4%-
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Fig. 1. (a) The time for in-DRAM mitigation can be provisioned proactively with REF/RFM or obtained reactively with ABO. Ideally, we want the storage-
efficiency of randomized tracking and the mitigation-efficiency of reactive mitigation (b) Our proposal, MIRZA, uses coarse-grained filtering to skip 99% of
ACTs and uses MINT+ABO for the remaining 1%. (c) MIRZA requires 28x fewer mitigations than MINT and 45x lower area overhead than PRAC.

16% for thresholds between 500 and 2K. The key problem for
proactive in-DRAM trackers is the frequent mitigations.
Reactive Mitigation with PRAC+ABO: Recently, JEDEC
announced an extension to DDR5 specification, which now
includes Per-Row Activation Counting (PRAC) and ALERT-
Back-off (ABO). PRAC extends the DRAM array with a per-
row activation counter that is updated on each activation. The
ABO protocol allows the DRAM chip to reactively request
the MC to pause and allow the DRAM chips additional time
to perform Rowhammer mitigation. For example, an ABO
is triggered when a given row reaches the specified number
of activations. As ABO is asserted reactively, in response
to the row activation counts, ABO facilitates more efficient
reactive in-DRAM mitigation, whereby mitigation time/energy
is consumed only when needed. For thresholds of higher than
500, PRAC+ABO incurs no mitigations, thus eliminating the
time and energy spent on performing mitigations.

As PRAC adds a counter with each row, it incurs area
overheads. PRAC also changes the DRAM timings to facilitate
counter-update operations. For example, PRAC increases the
Row Precharge Time (tRP) from 14ns to 36ns. The increased
timing causes slowdown (on average, 6.5%) for typical ap-
plications, even if ABO is not triggered. Thus, while reactive
mitigation by PRAC+ABO is efficient in terms of mitigations,
it suffers from area overheads and performance overheads. The
goal of our paper is to develop an in-DRAM mitigation that
has low overheads for all three: performance, area, and energy.
Enabling Low-Cost Reactive In-DRAM Trackers: Fig-
ure 1 (a) classifies in-DRAM mitigations based on track-
ing and mitigation. Trackers can be counter-based trackers
(e.g., Mithril or ProTRR) or randomized (e.g., MINT or
PrIDE). Mitigation can be done proactively using REF/RFM
or reactively using ABO. Prior in-DRAM mitigations, except
PRAC, use proactive mitigation. Currently, PRAC is the only
reactive in-DRAM mitigation. While it is straightforward to
use counter-based trackers with reactive mitigation (when
the counter reaches a threshold, trigger ABO to mitigate), it
remains unclear how one would use reactive mitigation with
randomized trackers (they do not have per-row state and need
to rely on periodic mitigation). To the best of our knowledge,
no prior work has explored the efficacy of low-cost randomized
trackers with reactive mitigation. Our paper proposes the
first low-cost reactive in-DRAM mitigation, called MIRZA
(Mitigating Rowhammer with Randomization and ALERT).

Solution: Our first insight towards making randomized track-
ers mitigation-efficient is to make such trackers reactive,
for example, by triggering an ABO when the tracker (e.g.,
MINT) wants to perform a mitigation. However, simply using
ABO instead of RFM does not itself reduce the mitigation
overheads. As the tracker still requires periodic mitigations,
it will invoke frequent ALERT and incur performance and
energy overheads. Thus, using MINT with ABO still results
in similar energy overheads and slowdowns as RFM. Our
second insight is to use Coarse-Grained Filtering (CGF), so
that randomized mitigation is invoked infrequently.

We observe that over a refresh window (32ms), each region
of DRAM bank (e.g. subarray of 1K rows each) typically
receives only about 1000 or fewer activations, on average. So,
MIRZA keeps track of per-region counts (128 counters of 11
bits, so 176 bytes per bank) and uses randomized mitigation
only if the subarray receives more than a Filtering Threshold
(FTH) activations. For CGF to be effective, it is important that
the activations to a bank are not focused on only a few regions.
To achieve an equal distribution of activation to regions, we
propose to use Strided Row-to-Subarray mapping. With this
mapping, CGF is highly effective. At FTH of 1500, we observe
that more than 99% of the activations do not require any
mitigation for a TRHD of 1K (per each side of a double-
sided attack). Only if activation counts exceed FTH, MIRZA
uses MINT to perform randomized mitigation, as shown in
Figure 1 (b). Overall, MIRZA reduces the mitigation overhead
of MINT by 28x. For a TRHD of 1K, MIRZA requires SRAM
overhead of only 196 bytes per bank (45x lower area overhead
than PRAC) and an average slowdown of only 0.36%.

Contributions: Our paper makes the following contributions:

1) This is the first paper to enable Low-cost Reactive in-
DRAM Mitigation by using ABO. We enable in-DRAM
mitigation with low area and performance overheads.

2) We employ Coarse-Grained Filtering (CGF) and Strided
Row-to-Subarray mapping to reduce the mitigation over-
heads by invoking randomized mitigation only if the
memory region incurs more than specified activations.
CGF reduces the mitigations of MINT by 28x.

3) Our proposal, MIRZA, uses ABO and filtering to tolerate a
threshold of 1K with only 196 bytes SRAM per bank (45x
lower than PRAC) and incurring only 0.36% slowdown
and 0.3% refresh power overheads.



II. BACKGROUND AND MOTIVATION

A. Threat Model

Our threat model assumes that an attacker can issue mem-
ory requests for arbitrary addresses. The attacker knows the
defense algorithm but not the outcome of the random number
generator. We declare an attack to be successful when any
row receives more than the threshold number of activations
without any intervening mitigation or refresh. We do not
consider RowPress [23] as it can be mitigated with Row-Buffer
Decoupling [23], [26] or by converting the row-open time into
equivalent number of activations [34], [38].

B. DRAM Architecture and Parameters.

DRAM chips are organized as banks with rows and
columns. To access data from DRAM, the memory controller
must first issue an activation (ACT) to open the row. To access
a conflicting row, the bank must first be precharged (RP). To
ensure data retention, the data in DRAM gets refreshed every
tREFW. A REF operation is performed every tREFI and lasts
for tRFC (see Table I).

TABLE I
DRAM TIMINGS (DDR5 SPECS FOR 6000AN).

Parameter Description Value PRAC
tRCD Time for performing ACT 14 ns 14 ns
tRP Time to precharge an open row 14 ns 36 ns
tRAS Time between activate and precharge 32 ns 16 ns
tRC Time between successive ACTs 46 ns 52 ns
tREFW Refresh Period 32 ms
tREFI Time between successive REF Cmds 3900 ns
tRFC Execution Time for REF Command 410 ns

C. DRAM Rowhammer and Trend

Rowhammer [20] occurs when a row is activated frequently,
causing bit-flips in nearby victim rows. Rowhammer is a
serious security threat [4], [7], [8], [21], [25], [40], [48]. The
minimum number of activations to an aggressor row to cause
a bit-flip in a victim row is called the Rowhammer Threshold
(TRH). TRH can be for a single-sided pattern (TRHS) or
a double-sided pattern (TRHD). As DRAM devices become
smaller, the leakage increases, causing TRH to drop from
139K (TRHS) in 2014 [20] to 4.8K (TRHD) in 2020 [17].
To ensure our designs are applicable to lower thresholds, our
work focuses on developing low-cost solutions for TRHD of
2K to 500.

D. In-DRAM Rowhammer Mitigation

Rowhammer mitigations rely on a mechanism to identify
the aggressor rows and refresh the victim rows. We focus on
in-DRAM solutions. There are three resources required for
an in-DRAM mitigation: Space (for tracking aggressor rows),
and Time and Energy (for doing mitigation). Identification of
aggressor rows can be done using counters (e.g., Mithril [19]
and ProTRR [24]) or probabilistically (e.g., PrIDE [11] or
MINT [35]). As counter-based trackers require impractical
SRAM overheads, we focus on probabilistic trackers to reduce
space overheads. Without loss of generality, we use MINT as
a representative low-cost in-DRAM tracker.

E. Minimizing Storage Overhead with MINT

Minimalist In-DRAM Tracker (MINT) [35] is a recent design
that can perform secure mitigation while requiring only a
single tracking entry. Figure 2 shows an overview of MINT.
MINT operates on a window of size W , where W is the
maximum number of activations between consecutive mitiga-
tions. At each mitigation, MINT mitigates the selected entry
(by refreshing the corresponding four victim rows) and then
randomly picks which of the N activations in the upcoming
window will be picked for mitigation. The process then
repeats for each successive window. Thus, for a MINT with a
window of W, the mitigation overhead is one mitigation per
W activations. While MINT requires only a single entry for
tracking, it can still tolerate a TRHD of 1.5K with a window
size of 75. Throughout the paper, we refer to the window of
W activations for MINT as MINT-W.
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I

1

MINT (uniform random value picked at start of window) 

Fig. 2. Overview of MINT with W=4. A-I are activations. During the first
window, the 2nd entry (B) is selected.

F. Mitigation Needs of Proactive Solutions

Typical In-DRAM trackers perform mitigation proactively
at periodic intervals, whereby one aggressor row is miti-
gated, even if no row has encountered threshold number of
activations. In-DRAM trackers typically perform mitigation
transparently during the time provided for refresh (REF). As
the time to mitigate an aggressor row is significant (280 ns
for bounded refresh [14]), performing mitigation within REF
reduces the time available to perform regular refreshes and
degrades DRAM reliability. Thus, DRAM chips typically
perform a mitigation every 4-8 REF [10]. Table II shows the
TRHD tolerated by MINT (single entry per bank) and Mithril
(2K entries per bank) as the time per mitigation varies from
1 REF to 8 REF (Refresh Cannibalization is the fraction of
REF time consumed by mitigations). At practical mitigation
rates (1 per 4-8 REF), MINT cannot tolerate even current
thresholds (4.8K). Even Mithril (with high storage overheads)
cannot tolerate current TRHD at 1 mitigation per 8 REF.

TABLE II
TRHD TOLERATED BY MINT AND MITHRIL (BOTH PERFORMING

PROACTIVE MITIGATION) WITH VARYING MITIGATION RATE

Mitigation Refresh MINT Mithril
Rate Cannibalization (1-entry/bank) (2K-entry/bank)

1 aggressor per REF 68% 1.5K 1K
1 aggressor per 2 REF 34% 2.9K 1.7K
1 aggressor per 4 REF 17% 5.8K 2.9K

1 aggressor per 8 REF 8.5% 11.6K 5.4K

Refresh Management (RFM): As DRAM cells move to
smaller technology nodes, DRAM chips face challenges due
to retention failures, so stealing more time from REF to



perform Rowhammer mitigation can adversely impact DRAM
reliability. DDR5 introduced the Refresh Management (RFM)
to provide DRAM chips additional time for mitigation. To
facilitate RFM, the MC provisions one counter per bank,
which is incremented for each activation to the bank. When
the counter reaches a specified Bank Activation Threshold
(BAT), an RFM signal is sent to the DRAM and the MC
resets the counter and stalls for a specific time (similar to
refresh). We note that BAT-RFM does not decrement the per-
bank counter on a REF, to avoid taking time away from normal
refresh. RFM is sent proactively by the MC at regular intervals,
regardless of whether DRAM needs the time to mitigate.

Unfortunately, RFM stalls the DRAM and reduces per-
formance. Furthermore, even with RFM, the DRAM device
still incurs energy overheads to perform frequent mitigations.
Figure 3 shows the slowdown and refresh power with RFM
when MINT is configured to tolerate TRHD from 500, 1K, and
2K (RFM every 24-96 activations). The slowdown with RFM
ranges from 2.9% (at TRHD=2K) to 11.1% (at TRHD=500).
Similarly, the victim refresh increases the DRAM refresh
power by 16.4% to 4.1% (we compute the refresh power
overheads as the ratio of the number of rows undergoing victim
refreshes to rows undergoing demand refresh).
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Fig. 3. Slowdown and Refresh Power Overhead. The slowdown of MINT
ranges from 11.1% to 2.9% (PRAC+ABO remains 6.5% across thresh-
olds). The Refresh Power Overhead of MINT ranges from 16.4% to
4.1% (PRAC+ABO is 0%)

Inefficiency of Proactive Mitigation: With proactive mitiga-
tion, the DRAM tries to proactively and periodically perform
one mitigation at every opportunity (under REF or under
RFM), regardless of whether any row has reached the threshold
number of activations. Proactive mitigations are inefficient,
as they incur time and energy overheads of mitigation at a
conservative rate, usually dictated by the worst-case pattern
(e.g. Feinting Attack [24] or circular pattern [35]). Ideally,
we need in-DRAM mitigation that can dynamically obtain
time for mitigation as and when the DRAM chip needs it,
for example, based on counter values. A new feature from
JEDEC enables such a reactive way to obtain mitigation time.

G. Reactive Mitigation with PRAC+ABO

JEDEC recently updated DDR5 specifications to sup-
port Per-Row Activation Counting (PRAC) and Alert-Back-
off (ABO). PRAC extends the DRAM array to have per-row
counters. ABO extends the ALERT signal so that DRAM chips
can pause the Memory Controller (MC) to get additional time
to do Rowhammer mitigation. Figure 4 shows an overview
of ABO. When ALERT is asserted, the MC can perform

normal operations for 180ns, after which the MC must stall
all operations and reactively issue an RFM. The latency
of ALERT is 530ns, out of which DRAM is unavailable
for 350ns. PRAC+ABO is an example of reactive in-DRAM
mitigation, whereby the mitigation time is obtained as needed
(based on value of per-row counter).

ALERT
180ns

(Normal)
350ns
(tRFM)

1 ACT

MC stops all operations

Fig. 4. Overview of Alert-Back-Off (ABO) with 1 RFM.

The Good of PRAC: One of the key advantages of
PRAC+ABO is the mitigation efficiency. For thresholds of 500
or more, PRAC+ABO performs almost no mitigations (the
rate of mitigation is less than 1 per 1 million activations),
thus eliminating the time and energy overheads consumed
in mitigation. This occurs because typical workloads tend to
spread their activations over a large number of rows, so rows
do not incur hundreds of activations within the refresh interval
(32ms) and do not require any mitigation.

The Bad of PRAC: PRAC not only requires area overhead
for counters and significant changes to the DRAM array, but it
also increases memory timings to facilitate the counter update.
For example, the Row Cycle Time (tRC) increases from 46ns
to 52ns (13% increase), and this latency is in the critical path
of serving conflicting requests from the same bank.

The higher latency of PRAC causes considerable slow-
downs. Figure 3 shows the slowdown of PRAC+ABO at
TRHD of 500 to 2K (all three values are identical). At
our thresholds, PRAC+ABO encounters zero ALERTs, so
the slowdown is only due to higher memory timings. On
average, PRAC+ABO incurs a slowdown of 6.5%1. We want a
reactive in-DRAM mitigation that avoids the area and latency
overheads of PRAC.

H. Goal of Our Paper
We note that ABO enables reactive in-DRAM trackers

that are mitigation-efficient. However, such reactive mitigation
seems to be viable only for counter-based trackers (as they can
trigger ABO when the per-row counter reaches the specified
threshold). It is unclear how one could use ABO-based reactive
mitigation with low-cost randomized trackers, as such trackers
do not have a per-row state and rely on periodic mitigations.

Ideally, we want in-DRAM mitigation that has the storage
efficiency of randomized trackers (thus requiring low storage)
and the mitigation efficiency of reactive mitigation (to reduce
the time and energy for mitigations). The goal of our paper
is to enable such a space-time-energy efficient in-DRAM
mitigation. Our key insight is to use a randomized tracker (to
reduce SRAM overheads) with ABO (to reduce the mitigation
time and energy) and use coarse-grained filtering to reduce
the frequency of ALERTs.

1Note that our PRAC-based slowdowns are similar/lower than the recent
work [2], [44] and we compare our slowdowns with a recent work [18] that
evaluates the slowdown of PRAC on a real system in Section X.



III. EXPERIMENTAL METHODOLOGY

A. Configuration

We use DRAMSim3 [22] updated with a detailed memory
model per DDR5 specifications. Table III shows our configu-
ration. We assume that the OS performs a virtual-to-physical
mapping at 4KB page granularity using the clock-style paging
algorithm [3]. We use the Minimalist Open Page (MOP) [16]
policy with 4 lines per row, as it is the best-performing policy
for our setup. To close a row, we use a soft close page policy
that closes a row after tRAS unless there are pending requests
to the opened row (if so, these requests are served first).

TABLE III
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 8 core, 4GHz, 4-wide, 392 entry ROB
Last Level Cache (Shared) 16MB, 16-Way, 64B lines

Memory Specs 32 GB, DDR5
tALERT 180ns (normal) + 350ns (RFM)

Banks x Sub-channel x Rank 32×2×1
Rows 128K rows per bank, 4KB rows

DRAM Address Mapping MOP4 [16] Mapping
Page Closure Policy Soft Close-Page Policy

B. Workloads

We use all 12 benchmarks from SPEC-2017 with at least 1
L3-MPKI, all six from GAP [37], and six mixed workloads.
We run the workloads in 8-core rate-mode, until each core
completes 250 million instructions (simpoint). We measure
performance using weighted speedup. Table IV shows work-
load characteristics, including DRAM bandwidth utilization
and average and the standard deviation of ACTs per subarray
(1024 rows each) per tREFW (32ms).

TABLE IV
WORKLOAD CHARACTERISTICS.

Workloads L3 ACT-PKI Bus ACT/subarray
MPKI (Mean) Util. (%) (µ± σ)

bc 58.8 29.7 82 572 ± 191
bfs 30.9 16.1 80.6 642 ± 278
cc 57.9 51.5 77.7 1037 ± 542
pr 57.7 29.5 83.1 620 ± 204

sssp 27.2 13 79.9 518 ± 149
tc 87.8 40.7 85.5 558 ± 118

blender 1.1 0.7 16 84 ± 46
bwaves 41.6 15.5 77.8 680 ± 224

cactuBSSN 3.5 3.3 44.6 395 ± 242
cam4 3.7 2.9 42.1 267 ± 204

fotonik3d 26.6 34.1 62.3 1469 ± 388
lbm 27.7 39.5 64.4 1413 ± 343
mcf 19 12.6 76.9 1056 ± 465

omnetpp 9.2 11.4 54.3 1015 ± 445
parest 26.5 12.8 84.6 965 ± 440
roms 7.8 5.1 58.5 551 ± 279

xalancbmk 1.6 2.3 26.1 281 ± 169
xz 5.2 8.3 48.1 914 ± 523

mix 1 18.6 17 72.7 1085 ± 397
mix 2 22.6 18.6 68.4 956 ± 304
mix 3 15.1 18.6 62.3 1006 ± 375
mix 4 10 19.1 57.7 1074 ± 373
mix 5 12.3 23.4 52.4 1182 ± 370
mix 6 13.6 18.7 62.9 1008 ± 340

Average 24.4 18.5 63.4 806 ± 309

IV. MIRZA: LOW-COST REACTIVE MITIGATION

To enable in-DRAM mitigation at both low storage over-
heads and low mitigation overheads, we propose MIRZA
(Mitigating Rowhammer with Randomization and ALERT).
Our key insight is that SRAM overheads can be minimized
using a randomized tracker, such as MINT. However, instead
of proactively doing a mitigation using REF or RFM, we use
ABO to reactively obtain the time required for mitigation, as
needed. To the best of our knowledge, ours is the first paper
to explore the viability of ABO with randomized trackers, as
ABO is currently considered compatible only with counter-
based trackers. Unfortunately, simply combining MINT with
ABO (MINT+ABO) still results in significant performance
overheads akin to RFM (5%-15%), as we show next.

A. The Naive MIRZA Design: MINT+ABO

Our first step in enabling MIRZA is to use ABO for
mitigation. MINT operates on a fixed-sized window (e.g., with
a window of W , MINT would select one of W upcoming acti-
vations for mitigation). However, ALERT is channel-wide, and
different banks may encounter a different number of activa-
tions; hence, their windows may end at different times. To help
synchronize the mitigations of ALERTs across different banks
of a channel so that they can be serviced with one ALERT,
we use queues (MIRZA-Q) to buffer the addresses selected
for mitigation. Furthermore, we add Tardiness Counters with
each MIRZA-Q entry that counts the number of activations
a row has encountered since entering the queue (there are
no duplicates). An ALERT is triggered when any bank has
a full queue or if the Tardiness Counter of any MIRZA-Q
entry exceeds a defined Queue Tardiness Threshold (QTH).
On ALERT, each bank mitigates the address with the highest
counter value in the queue. Figure 5 shows an overview of
Naive MIRZA. Our default design uses 4-entry MIRZA-Q per
bank (so it avoids having large CAMs).

MINT-W Addr, Ctr

MINT-W Addr, Ctr

Bank-N

Bank-0
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MIRZA-Q
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Fig. 5. Overview of Naive MIRZA: MINT selects one address out of MINTW
activations to a bank and buffers it in MIRZA-Q. ALERT is triggered (for
mitigation) if MIRZA-Q is full or if the queued entry exceeds QTH activations.

B. Pitfall of Naive MIRZA

Table V shows the slowdown of Naive MIRZA for MINT
with a window size of 12/24/48 as the number of MIRZA-Q
entries is varied from 1 to 8. There are two main takeaways.
First, the buffering of entries in the per-bank queue reduces the
slowdown significantly, as it helps ensure that when an ALERT
happens, a larger number of banks will have something



to mitigate, making ALERT more efficient (more rows get
mitigated across all the banks). Second, the naive method of
combining randomization with ABO still causes a significant
slowdown. On average, at MINT with a window of 24/48/96,
which corresponds to TRHD of 500/1000/2000, the average
slowdown, even with a large queue, remains approximately
5% to 15%, which is similar to 5%-17% for MINT with
RFM. Furthermore, Naive MIRZA still incurs refresh power
overheads similar to those of RFM. Thus, Naive MIRZA still
has high mitigation overheads.

TABLE V
SLOWDOWN OF NAIVE MIRZA FOR MINTW OF 24/48/96 (TRHD OF

500/1000/2000) AS MIRZA-Q SIZE IS VARIED.

MINTW Num. Entries in MIRZA-Q
1 2 4 8

24 151.83% 14.21% 10.95% 10.49%
48 102.18% 7.02% 5.81% 5.62%
96 64.07% 3.52% 3.08% 3.01%

C. Insight: Coarse-Grained Filtering

The security of in-DRAM trackers (be it deterministic
or randomized) is determined by a worst-case pattern that
continuously performs the maximum number of activations
focused on a single bank. These patterns tend to do ACTs at
a high rate and focus their ACTs on only a small set of rows.
However, for benign workloads, the access pattern is more
spread out over a large number of rows and typically does
not perform the maximum number of ACTs. This divergence
between the worst-case pattern and benign workloads is highly
pronounced when observed at a coarser granularity. Consider a
bank divided into regions of 1024 rows each (e.g. subarray), so
there are 128 regions per bank. For the worst-case pattern, for
every tREFW, we can get 621K activations per bank, and these
activations could be in the same subarray. On the other hand,
for benign workloads, we get fewer activations compared to
the worst case,2 and if these activations get spread across all
the subarrays, then the number of activations on each subarray
would further get reduced by 128x. Figure 6 compares the
number of ACTs per subarray (per tREFW, see Table IV) for
our workloads and the worst-case pattern. Our workloads incur
between 219-1243 ACTs per subarray per tREW, which is
500x smaller than the 621K in the worst-case.

101 102 103 104 105 106

ACTs/Subarray per tREFW

423x

Max ACTs
per tREFW

Fig. 6. Avg. ACTs/subarray per tREFW. Rowhammer trackers are designed
to tolerate the worst-case (e.g., 621K ACTs per tREFW/subarray). However,
workloads average 100-1500 ACTs/subarray per tREFW (423x lower).

2DRAM channels impose power constraints on the rate of activations using
tFAW (time for four bank activation window). Given tFAW of 13ns, a channel
can perform a maximum of 8.8 Million activations per tREFW, which if spread
over 32 banks, results in average 275K activations per bank per tREFW. Our
workloads perform about 25%-50% of this theoretical maximum number of
activations per bank per tREFW.

Our key insight is to do coarse-grained (e.g. per-subarray)
activation counting and enable randomized mitigation only
if the activation count exceeds a Filtering Threshold (FTH).
Figure 7 shows an overview of Coarse-Grained Filtering
(CGF). As CGF tracks at a coarse granularity (subarray), it
needs only a few counters (128 per bank), so SRAM overhead
is small (176 bytes per bank).

Ctr > FTH?
RegionID

Ctr Table

Ctr

No
Skip Mitigation

Yes Do Randomized
 Mitigation on

RowAddrACT

Fig. 7. Overview of Coarse-Grained Filtering

D. Impact of Row-to-Subarray Mapping

The filtering of CGF will be effective only if the activations
to a bank get distributed over a large number of subarrays. This
distribution of activations is highly influenced by the Row-
to-Subarray (R2SA) mapping. We consider two mappings:
Sequential R2SA and Strided R2SA. Sequential mapping maps
consecutive 128 rows to the same subarray. Strided mapping
maps consecutive rows to different subarrays such that every
128th row gets placed in the same subarray.

Table VI shows the percentage of ACTs that get filtered by
CGF, as the FTH is varied for the two mappings. We note
that under Sequential R2SA mapping, CGF is not effective as
most of the activations are focused on only a small number
of subarrays. This occurs because of the spatial locality of
accesses across consecutive pages. We observe that only 7%
of the ACTs get filtered, requiring that the remaining 93% of
ACTs still need randomized mitigation.

TABLE VI
EFFECTIVENESS OF COARSE-GRAINED FILTERING

Filtering Sequential Row-to-SA Strided Row-to-SA
Threshold Filtered Remaining Filtered Remaining

1400 5.16% 94.84% 98.34% 1.66%
1500 5.55% 94.45% 99.12% 0.88%
1600 5.94% 94.06% 99.62% 0.38%
1700 6.31% 93.69% 99.85% 0.15%

With Strided R2SA mapping, CGF becomes highly effective.
For example, at FTH of 1500, CGF filters out 99.5% of the
activations. Only the remaining 0.5% of the ACTs participate
in the randomized mitigation. Thus, CGF can reduce the
mitigation overhead of our workloads by almost 200x. The
ACTs that escape filtering participation still get selected prob-
abilistically (e.g., 1/12 for a MINT window of 12). We propose
to use Stride Row-to-Subarray mapping, as DRAM vendors
have the flexibility to choose the mapping, and it incurs no
additional cost (just different address bits for indexing).

We note that the CGF-based filtering is effective only for
benign workloads. If a workload continuously causes ACTs to
the same subarray, then it can evade CGF quickly. Therefore,
to ensure security, our design, MIRZA handles workloads that
escape CGF.



V. MIRZA: OVERVIEW AND DESIGN

MIRZA reduces the mitigation overhead of MINT by using
both filtering and ABO. Figure 8 shows an overview of
MIRZA for one bank (the structure is replicated for each
bank). We call the filtering structure Region Count Table
(RCT), where the region-size denotes the number of rows per
region. For our default setting of subarray-sized region, the
region-size is 1024 rows, and the number of regions equals
128. An ACT command first looks up the RCT (based on
region id) and obtains the RCT-Counter (Ctr). If the RCT
counter is greater than FTH, the row address goes through
MINT-based probabilistic selection, and if selected, it is in-
serted into the MIRZA-Q. When the queue is full or if a
certain queued entry has accrued QTH activations, an ABO is
triggered. On receiving ALERT, the bank mitigates one entry
from the MIRZA-Q and dequeues it.

MINT-W RowID
MIRZA-QMINT

Ctr

ABO (if needed) 

RCT

Ctr> 
FTH?

Yes

Done
No

ACT
RegionID

99.5%

0.5% 1/2400

99%

1% 1/1200

Fig. 8. Overview of MIRZA. MIRZA contains four parts (a) RCT for filtering
(b) MINT for probabilistic selection (c) MIRZA-Q, and (d) ABO for time.

A. Structures

MIRZA requires three structures: (1) RCT, for filtering,
(2) MINT for probabilistic selection, and (3) MIRZA-Q for
queuing the row selected by MINT until mitigated via ALERT.

RCT: RCT is an untagged table that contains one counter per
region. Each RCT entry is reset every tREFW. An ACT looks
up the RCT entry. If the entry is less than or equal to FTH, the
counter value is incremented, and the activated row does not
participate in any mitigation (this occurs for more than 99% of
the ACTs for our default setting). If the RCT entry is greater
than FTH, then it is not updated, and the row participates
in MINT-based probabilistic selection (this occurs for 1 out
of 100 ACTs for our default setting). Once the RCT counter
reaches FTH+1, it remains in that state until the region gets
refreshed and the RCT counter is reset.

MINT: MINT with a window size of W selects exactly one
of the W rows sent to it. Thus, for our default setting, MINT
receives only 1/100 ACTs for probabilistic selection, and it
selects only 1/12 (so, overall, 1 out of 1200). The selected
entry is inserted into MIRZA-Q with a counter value of 1.

MIRZA-Q: The queue entries buffer the row addresses se-
lected by MINT. They also keep track of the ACTs received by
the buffered row since insertion into the queue. If the queue is
full or the ACTs to any buffered entry exceeds QTH, MIRZA
sends an ALERT. On receiving an ALERT, MIRZA picks the
valid entry with the highest value of ACT counts and mitigates
it (mitigation is done by refreshing two victim rows on either
side of aggressor row). The entry is removed from MIRZA-Q.

B. Operation
An ACT operation arriving at the DRAM bank can result

in one of three cases: (1) RCT updated and counter does not
exceed FTH, so no mitigation is needed. (2) RCT counter
exceeds FTH, and the row is contained in MIRZA-Q. The
matching counter in MIRZA-Q is increased. (3) RCT counter
exceeds FTH, row is not in MIRZA-Q, so the row participates
in MINT. If the row gets selected by MINT, it gets buffered in
MIRZA-Q. In all three cases, the ACT performs the activation
of the given row. MIRZA does not require any changes to
all other DRAM operations (such as read, write, precharge).
MIRZA leverages refresh to reset the RCT counters.

C. Safe Reset of RCT Counters
As RCT is in-DRAM, this reset is synchronized with the

REF operation. We want the RCT counter associated with the
region to be reset when the region gets refreshed. However, as
a region contains hundreds of rows, refreshing a region takes
several REF operations.

Without loss of generality, we assume that refreshes are
performed sequentially, one subarray at a time (16 rows per
REF). To refresh a subarray with 1K rows, we need 64
REFs. Resetting RCT-entry on the 1st REF to a subarray is
insecure as activations to the later rows in the region can
get undercounted. Resetting RCT-entry when the last row in
the region gets refreshed is insecure, as the activations of the
earlier rows in the region can get undercounted.

To do a safe reset, we keep track of the number of acti-
vations to the region undergoing refresh (between the refresh
of the first row to the last row), and instead of resetting the
RCT entry to zero, we initialize the RCT entry to the number
of activations incurred during the refresh. This ensures that
RCT-entry still correctly accounts for activations (to earlier
rows during earlier REF) at the end of the region refresh. We
need only one extra counter per bank if the chip refreshes
one subarray at REF (if the chip interleaves refreshes of two
subarrays, we would need two such counters per bank).

D. Impact of ACTs During ABO
Until now, we have treated ABO as an instantaneous com-

mand that simply provides time for mitigation. However, ABO
is not instantaneous: it requires a 180ns prologue (activity
before stall), a 350ns stall period, and one mandatory ACT
(epilogue) before another ALERT can be issued (see Figure 4).
This allows up to 4 ACTs to the same bank between consecu-
tive ALERTs. Since each ALERT can evict only 1 entry from
MIRZA-Q, steady-state insertion into MIRZA-Q is limited to
1 entry per ALERT. This constraint is satisfied if MINT-W≥4.
In our default setting, TRHD=1K and MINT-W=12.

E. Minor Changes to JEDEC Specifications
Current JEDEC specifications provide PRAC+ABO as a

combined package selected by a mode register. For imple-
menting MIRZA, we need JEDEC specifications to enable
only ABO and not PRAC. In this mode, the DRAM timing
parameters remain unchanged (not inflated due to PRAC).
And, we use ABO with 1 RFM per ALERT.



VI. SECURITY ANALYSIS OF MIRZA

In this section, we determine the TRH that can be safely
tolerated by MIRZA. We first determine the safe-TRH for
single-sided attacks and use it to determine the safe-TRH for
double-sided attacks.

A. Analyzing Safe-TRH in Single-Sided Attack

To obtain Safe-TRH (TRHSSafe) under a single-sided
attack, we analyze the maximum number of unmitigated
activations that can be performed on a row before the row
is mitigated or naturally refreshed. A row gets refreshed every
tREFW. Furthermore, RCT-entries get reset when the row
(region) gets refreshed (Appendix B). Hence, we want to
determine the number of unmitigated activations on a row in
the tREFW interval since the last refresh.

MIRZA-QMINTRCTACT ABO
D

A
B C

Fig. 9. Determining Safe-TRH of MIRZA by analyzing the four phases of
accruing ACTs before mitigation.

Let ACTnomitig be the number of unmitigated activations
on a given row since the last refresh or mitigation. We
determine ACTnomitig by analyzing the number of activations
received by the row in different parts of MIRZA, as shown in
Figure 9.

Phase-A (RCT): Initially (after reset), the activation counts
of the row are tracked by the RCT (albeit in a coarse-
grained manner). The RCT entry is incremented whenever
the given row (or any other row within the same region)
has an activation. This phase ends when the RCT count
reaches the filtering threshold (FTH). So, during Phase-A,
ACTnomitig ≤ FTH

Phase-B (MINT): This phase begins when the RCT-entry ex-
ceeds FTH , so the row participates in MINT-based selection.
The row can accrue unmitigated ACTs if it continues to escape
selection of MINT. The unmitigated ACTs during exclusively
this phase equals to the TRHS of MINT (MINTTRHS).
Therefore, the total unmitigated ACT until this phase is
bounded by: ACTnomitig ≤ (FTH +MINTTRHS).

Phase-C (MIRZA-Q): This phase begins when the row is
selected by MINT and is inserted in MIRZA-Q. If the queue
is not full, the entry will continue to accrue unmitigated ACTs
while queued. MIRZA-Q tracks these ACTs and triggers an
ABO when the count exceeds a Queuing Threshold (QTH).
So, the row can accrue at most QTH unmitigated activations.
So, the total unmitigated ACT until this phase is bounded by:
ACTnomitig ≤ (FTH +MINTTRHS +QTH)

Phase-D (ABO): As ABO is not instantaneous, the row still
receives a few ACTs (ABOACTS), even after triggering an
ABO. For example, even after triggering ABO, we can do 3
more ACTs to the row during the prologue phase. In fact, an
attacker could keep multiple rows in MIRZA-Q and cause even

more ABOACTS , as we can remove only one entry per ABO
(similar to Feinting Attack [24]). Figure 10 shows this example
for a queue-size of 4 entries, and QTH is denoted as Q (for
brevity). A, B, C are at Q ACTs, we insert D, which triggers
mitigations for A, then B, and then C. C can get QTH+7 ACTs.
Thus, the total number of unmitigated ACTs is bounded by:
ACTnomitig ≤ (FTH+MINTTRHS+QTH+ABOACTS).

TRHSSafe for MIRZA is any value greater than
ACTnomitig .

TRHSSafe > (FTH + MINTTRHS + QTH +
ABOACTS)

Fig. 10. Extra ACTs incurred due to non-instantaneous ABO (BEF/AFT is
before/after stall). Row-C get Q+7 ACTs.

B. Analyzing Safe-TRH in Double-Sided Attack

A double-sided attack sandwiches a victim row between two
aggressor rows. We are interested in determining the number
of unmitigated ACTS (ACTnomitig) on the two aggressors.
Similar to the single-sided case: (1) In Phase-A, each row
can accrue (FTH/2) ACTs3 (2) In Phase-B, each row can get
as many activations as the double-sided threshold of MINT
(MINTTRHD), (3) In Phase-C, each row can get QTH ACTs,
and (4) In Phase-D, for simplicity, we assume that both rows
accrue ABOACTS . TRHDSafe is any value greater than
ACTnomitig .

TRHDSafe > (FTH/2 + MINTTRHD + QTH +
ABOACTS)

C. MIRZA Configurations and Storage

We use a default 4-entry MIRZA-Q, and QTH equals 16.
Table VII shows the MIRZA configurations we use for TRHD
of 2K/1K/500 (target TRHS would be 2x higher). We note that
MIRZA can tolerate a TRHD of 1K with less than 200 bytes
of SRAM per bank. To determine the threshold of MINT, we
use its publicly available security model [33].

TABLE VII
MIRZA CONFIGURATIONS FOR TARGET TRHD

TRHD FTH MINT-W Regions/Bank SRAM/Bank
2000 3330 16 64 116
1000 1500 12 128 196
500 660 8 256 340

3If a victim row is at the edge of a region, the two aggressors can each
accrue FTH activations, and increase the tolerated TRHD. To ensure security,
for ACTs on the edge row, we increment the RCT counter of both regions.
This is a concern only if the region size is less than the subarray size.
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Fig. 11. (a) Performance impact due to MIRZA and PRAC+ABO. MIRZA incurs significantly lower slowdown than PRAC (1.43%, 0.36%, and 0.05%)
vs 6.5% on average for TRHD=500/1K/2K, respectively. (b) ALERTs-per-100×tREFI (per sub-channel). For TRHD=1K, MIRZA triggers ALERTs in only
2.16% of tREFIs, while PRAC triggers almost none, indicating that PRAC’s slowdown is exclusively due to increased memory timings.

VII. RESULTS AND ANALYSIS

We present the results of MIRZA for the three target
configurations (see Table VII) corresponding to a TRHD of
500, 1000, and 2000. We also compare MIRZA with a system
using PRAC+ABO, which can tolerate similar TRHD values.
We assume that PRAC+ABO uses the recently proposed
MOAT [34] design (for our thresholds, PRAC+ABO incurs
negligible mitigations, so other designs, such as Panopticon [1]
and QPRAC [46], would yield similar results).

A. Impact on Performance

Figure 11 (a) shows the performance impact of MIRZA
and PRAC normalized to our unprotected baseline system.
MIRZA incurs an average slowdown of 1.43%, 0.36%, and
0.05% for TRHD values of 500, 1K, and 2K, respectively.
For TRHD=500/1K fotonik3d experiences the highest
slowdowns (6.5%, 2.3%). For TRHD=2K, cc experiences
the highest slowdown (0.43%). This happens because the
escape probability of fotonik3d from the filtering mech-
anism (CGF) is the highest for the corresponding TRHD.

PRAC+ABO incurs an average slowdown of 6.5% for all
three configurations. This is due to increased memory timings
(e.g. tRC increase of 10%). MIRZA can tolerate low thresholds
using ABO, and without the overheads of PRAC.

B. Rate of ALERT

MIRZA uses ALERTs to obtain mitigation time. Frequent
invocation of ALERT can cause a slowdown with MIRZA.
Figure 11 (b) shows the ALERTs-per-100×tREFI for both
MIRZA and PRAC+ABO. At TRHD of 1K, MIRZA triggers
2.16 ALERTs per 100×tREFI, while PRAC triggers almost
0. This further indicates that the slowdown of PRAC is
exclusively due to increased memory timings.

C. Analysis of Mitigation Overheads

MIRZA uses a 3x-4x shorter window (W) than MINT
but employs filtering to reduce mitigations. The mitigation
overhead of MIRZA is a product of (a) the Escape probability

of filtering and (b) the Selection probability of MINT (1/W).
Table VIII shows the mitigation overheads of MIRZA and
MINT. For TRHD=500, 1K, and 2K, MINT incurs mitigation
overheads of 1/24, 1/48, and 1/96, respectively. The mitigation
rate of MIRZA is 10x, 28.5x, and 125x lower than MINT,
respectively. Thus, the coarse-grained filtering used by MIRZA
is highly effective at lowering the need for mitigation.

TABLE VIII
MITIGATION OVERHEAD OF MINT VS. MIRZA.

TRHD MINT MIRZA Difference
(1/W) (RCT Escape Prob. × 1/W)

2000 1/96 1/751× 1/16 = 1/12016 125x
1000 1/48 1/114× 1/12 = 1/1368 28.5x
500 1/24 1/30× 1/8 = 1/240 10x

VIII. SENSITIVITY ANALYSIS

Table IX shows the slowdown incurred by MIRZA for dif-
ferent MINT-W and FTH pairs at TRHD of 1000. Higher FTH
filters more ACTs and reduces slowdown, but requires a lower
MINT-W to stay within the same TRHD (see Section VI-B).
Lower MINT-W increases ABO frequency, offsetting the ben-
efits of filtering.

As MINT-W increases, ABO overhead drops, but FTH
must also decrease, reducing filtering. For TRHD=1000, this
tradeoff results in a higher overall slowdown. For example,
increasing MINT-W from 8 to 12 reduces MINT slowdown
by 1.5x, but quadruples unfiltered ACTs (0.21% to 0.88%),
more than doubling the total slowdown (0.13% to 0.36%).

TABLE IX
AVERAGE SLOWDOWN (%) FROM MIRZA WITH VARYING FTH AND

MINT-W VALUES FOR TRHD=1K. OUR PROPOSED CONFIGURATION IS
SHOWN IN BOLD.

MINT-W 4 8 12 16
FTH 1820 1660 1500 1350

SRAM/Bank (B) 196 196 196 196
Slowdown (%) 0.1 0.13 0.36 0.6

Remaining ACTs (%) 0.06 0.21 0.88 2.29
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A. Analysis of Relative Area Overheads
At TRHD=1K, MIRZA requires 1 (SRAM) counter per

subarray. As PRAC provisions 1 counter per row, it would
require 1K (DRAM) counters per subarray, in addition to the
bulky sense-amplifier-and-precharge units for the counter cells.

To compare the relative areas of DRAM versus SRAM, we
use a simple model [5], [45] with each DRAM cell requiring
6F 2 area and SRAM cell requiring 120F 2 area (F is the
feature size). Table X compares the relative area overheads
per subarray for MIRZA and PRAC. As both MIRZA and
PRAC require per-bank queues, that area is common to both.
At TRHD=1K, MIRZA requires a 45x lower area than PRAC.

TABLE X
RELATIVE AREA OF MIRZA AND PRAC (PER SUBARRAY).

TRHD MIRZA PRAC
1K 11-bit SRAM 10-bit x 1K = 10Kb DRAM (45x more area)
500 20-bit SRAM 9-bit x 1K = 9Kb DRAM (22.5x more area)
250 36-bit SRAM 8-bit x 1K = 8Kb DRAM (11.2x more area)

MIRZA also requires a much lower area overhead than
Mithril. To tolerate a TRHD of 1K, even if Mithril is provi-
sioned with 1 mitigation per REF, Mithril requires 2K entries
(28 bit each, so 7KB SRAM) per bank, whereas, MIRZA
requires only 196 bytes SRAM per bank (37x lower).

B. Analysis of Refresh Power Overheads
Figure 13 shows the relative increase in refresh power due to

mitigations for MINT and MIRZA for TRHD=500 to 2K. As
MIRZA reduces the mitigation requirements (by 10x-125x), it
also reduces the relative refresh power consumed by mitigative
refreshes.
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Fig. 13. Refresh Power Overhead for MINT and MIRZA.

The SRAM structures required for MIRZA incur negligible
power overheads. Using CACTI-7.0, we estimate that MIRZA
structures incur 0.6 milliwatts (per chip) which is approxi-
mately 0.25% of the overall DRAM power consumption (240
milliwatts per chip).

IX. ANALYZING PERFORMANCE ATTACKS

MIRZA relies on ALERT, which stalls an entire channel
and affects all co-running applications. A major concern with
any ALERT-based solution is their susceptibility to Denial-of-
Service (DoS) attacks, where an attacker can cause significant
system-wide slowdown on benign applications.

A. Model for Benign Workloads and ALERT
For this analysis, we use ACT-Throughput (ACTs per unit

time) as the key metric to measure the system performance.
Consider a benign workload that continuously performs reads
by striping the accesses over 16 banks, and each access incurs
an activation. Given tFAW of 12ns (and bus time per request
of 3ns), the workload can perform one ACT every 3ns. So,
the ACT throughput is 1 per 3ns. Under ALERT, the benign
application can still do activations for the first 134ns (180ns
- tRC), then precharge, the stall for 350ns. As the application
can do 44.66 ACTs during the 530ns of ALERT, the ACT
throughput is 1 per 11.35 ns (3.8x slowdown).

B. Kernel for Triggering Performance Attack
For a performance attack, we form a circular pattern con-

taining K addresses that each map to a different row within
the same RCT region, and do continuous ACTs to this circular
pattern, as shown in Figure 12. The attack spends the initial
time priming the RCT to exceed FTH. For our design, this
time is small (less than 1% of tREFW). Once the RCT entry
is primed, for a given MINT-W, the attack performs 3 ACTs
during the prologue period and W-3 ACTs outside of ALERT.

Table XI shows the relative throughput of benign application
under peformance attack. At MINT-W of 12 (our default),
the maximum slowdown is 1.8x. Even with MINT-W of 8,
the slowdown remains 2.25x. We compare the worst-case
slowdown of MIRZA with MINT and PRAC in Appendix A.

TABLE XI
RELATIVE ACT THROUGHPUT AND SLOWDOWN

MINT-W ACT-Throughput Slowdown
16 63.4% 1.6x
12 55.9% 1.8x
8 44.5% 2.25x

We note that the 1.6x-2.25x slowdown from the perfor-
mance attack (for MINT-W of 16 to 8) on MIRZA is similar in
range to other memory contention attacks, such as row-buffer
conflicts [29], [31]. Thus, the performance attacks on MIRZA
do not represent a worse way for Denial-of-Service.



X. RELATED WORK

Target Row Refresh (TRR): To tolerate Rowhammer, cur-
rent devices are equipped with TRR. While the details of
TRR trackers are not public, the designs have been reverse
engineered (containing 4-28 entries [12]) and broken with
specialized patterns [7], [12]. Table XII compares TRR with
MINT and MIRZA (both configured for the current TRHD
of 4.8K). We configure TRR with 28 entries (3 bytes each,
including a row-id and counter) and do one aggressor row mit-
igation (280ns) per 4 REF. We configure MINT with Delayed
Mitigation Queue [35] (to handle refresh postponement) and
perform one aggressor row mitigation per 3 REF. For MIRZA,
we use CGT with 32 regions (so, 32 counters per bank) and
do not do any victim refreshes under REF.

TABLE XII
STORAGE AND MITIGATION OVERHEAD (TRHD=4.8K)
Tracker Storage Secure Refresh

(per bank) Tracking? Cannibalization
TRR 84 bytes No 17%

MINT 20 bytes Yes 23%
MIRZA 72 bytes Yes 0%

At the current threshold of 4.8K, all three designs incur
low SRAM overheads (below 100 bytes per bank). However,
TRR is not secure. As both TRR and MINT are proactive
trackers, they proactively perform mitigations under REF, thus
cannibalizing the REF time and reducing the time available for
refreshes (by 17%-23%). MIRZA avoids refresh cannibaliza-
tion, leaving the entire REF time for demand refresh. Thus,
MIRZA is appealing for adoption even at current thresholds.

Per-Row Activation Counting: PRAC is a framework and the
security is still determined by the underlying implementation.
Recent works, such as MOAT [34] and QPRAC [46] propose
secure mitigations using PRAC. However, they still incur
the area and performance overheads of PRAC. Chronus [2]
proposes to have a specialized subarray for counters, such
that the counter update and demand activations can happen
concurrently. Unfortunately, this design still incurs the area
overheads of counters, requires significant design overheads
for architecting heterogeneous subarrays, and imposes signif-
icant restrictions on concurrent activations (for example, the
tFAW time may need to be doubled, as each demand activation
now consumes the power of two activations). MoPAC [44]
reduces the slowdown of PRAC by probabilistically updating
its counters, but it still requires the area overheads of counters,
and takes time away from refresh to update counters. MIRZA
avoids the area, power, design complexity, and performance
overheads of Chronus (higher tFAW) and MoPAC. Hydra [36]
uses SRAM filters to reduce the memory lookups for activation
counters (stored in the addressable space of DRAM) but
still incurs the DRAM storage overheads. Furthermore, Hydra
requires double lookups for some accesses (one for demand
and the second for counter), which makes it incompatible
with the in-DRAM setting. The in-DRAM setting also makes
Blockhammer [47] impractical, as DRAMs are deterministic
devices and cannot delay a request for an arbitrary time.

Comparison of PRAC Slowdowns: Kim et al. [18] evaluated
PRAC on a real system and reported an average slowdown
of 1% for SPEC2017 [42], significantly lower than the
6.5% slowdown we observe. This discrepancy stems from
differences in workload selection and system configuration.
First, we only include SPEC workloads with MPKI>1, which
are more memory-intensive. Second, their system is over-
provisioned with 8MB cache per core (L2 + LLC), as they
run only 8 P-cores (SMT disabled) while utilizing the entire
LLC, which is also provisioned for the E-cores, whereas our
setup uses 2MB per core (similar to current systems). Third,
their baseline tRC is 48ns compared to our 46ns, reducing the
delta with PRAC (52ns). Finally, they use 2 memory channels
for 8 cores, while we use only one channel for 8 cores.

When our simulation setup is modified to match their
configuration, we obtain PRAC slowdown of 2.39% over all
SPEC2K17, within 1% of their results. However, as their setup
underutilizes the available cores, it is not representative of
typical server-class CPUs, which provides 2MB LLC and 1MB
L2 per physical core (halved under SMT), and 8 cores per
channel. Also, if given 8MB cache-per-core, most SPEC2K17
benchmarks fit in the cache (20 out of 26 have MPKI<1).

ABO: MIRZA relies on ABO to obtain mitigation time.
Two recent proposals, Self-Managing DRAM [9] and Au-
toRFM [33], propose to do Rowhammer mitigations transpar-
ently within the DRAM chips, and redefine ABO to decline
an activation that conflicts with a subarray undergoing mitiga-
tion. These solutions still incur energy overheads of frequent
mitigations. Furthermore, these designs also redefine ABO to
quickly react to signal a conflicting ACT, imposing significant
timing restrictions on the ALERT signal. MIRZA avoids the
power overheads of these designs, does not impose restrictions
on address mapping at the MC, and does not require JEDEC
to redefine the timing and specifications of ABO.

Error Correction: SafeGuard [6], CSI-RH [15], PT-
Guard [39] use codes to correct Rowhammer failures. How-
ever, uncorrectable failures can still occur and cause data loss.
TAROT [41] uses profiling to proactively access rows that are
vulnerable to Rowhammer. As Rowhammer behavior changes
over time [30], imperfect profiling can cause errors.

MC-side Defenses: Recent works such as DREAM [43] and
MIST [32] use the DRFM [28] command to build MC-side
rowhammer defenses. DRFM refreshes victims across 8 or 32
banks in parallel. DREAM delays DRFM, and MIST ensures
a sampled aggressor is always available, allowing each DRFM
command to mitigate several banks concurrently.

Rowhammer in DDR5: Recent work has shown that DDR5
remains vulnerable to Rowhammer despite stronger in-DRAM
TRR. Zenhammer [13] reported the first DDR5 bit flips
using non-uniform patterns, though only on a single DIMM.
Phoenix [27] extends this, reverse-engineering DDR5 TRR
behavior and introducing a self-correcting synchronization
method that reliably triggers bit flips across all tested DIMMs.



XI. CONCLUSION

For in-DRAM mitigations to be practical, they need to be
both space-efficient (area for tracking) and mitigation-efficient
(time and energy for mitigations). In this paper, we develop
MIRZA, the first low-cost reactive in-DRAM mitigation that
incurs low overheads for storage, time, and power. MIRZA
uses a randomized tracker (MINT), coarse-grained filtering
for reducing mitigation requirements, and ABO for reactively
obtaining the mitigation time as needed. MIRZA requires 45x
lower area overheads than PRAC and 28.5x lower mitigation
overheads than MINT. MIRZA can tolerate a threshold of 1K
with only 196 bytes SRAM per bank and incurring only 0.36%
slowdown (much lower than 6.5% with PRAC). Thus, MIRZA
represents a strong practical alternative to PRAC. The code for
MIRZA is available at https://github.com/hritwik567/mirza-ae
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APPENDIX A
PERFORMANCE UNDER ATTACKS

We configure the default parameters for MIRZA for op-
timizing not only the performance for benign workloads
(typically lower MINT-W is better) but also to ensure that
MIRZA has acceptable slowdowns even under worst-case
patterns (hence higher MINT-W for increasing thresholds). Ta-
ble XIII compares the slowdown of MIRZA with PRAC+ABO
and MINT+RFM for both worst-case patterns (performance
attacks) and benign workloads (average slowdowns).

TABLE XIII
AVERAGE AND WORST CASE SLOWDOWN FOR PRAC, MINT AND MIRZA

FOR TRHD=500/1000/2000.

TRHD Tracker Perf-Attack Average
Slowdown Slowdown

500
PRAC+ABO 1.2x 6.5%
MINT+RFM 1.4x 10.95%

MIRZA 2.25x 1.43%

1000
PRAC+ABO 1.1x 6.5%
MINT+RFM 1.2x 5.81%

MIRZA 1.8x 0.36%

2000
PRAC+ABO 1.05x 6.5%
MINT+RFM 1.1x 3.08%

MIRZA 1.6x 0.05%

We note that PRAC+ABO has the best performance under
worst-case patterns. However, it suffers from high slowdowns
for the average case (benign workloads). In general, systems
are primarily designed to provide good performance for typi-
cal non-adversarial workloads, while still ensuring acceptable
performance for worst-case patterns.

Our design ensures that the slowdown caused by MIRZA
is no worse than that other non-RH-related performance at-
tacks, such as row buffer conflicts and memory contention
attacks [29], [31]. Thus, the overall worst-case slowdown of
the system is still determined by the non-RH attacks.

APPENDIX B
SAFE RESET OF RCT COUNTERS

To ensure that the RCT counters maintain a low value, they
must be periodically reset. As RCT is in-DRAM, this operation
can be synchronized with the refresh operation. Ideally, we
want the RCT counter associated with the region to be reset
when the region gets refreshed. However, a region contains
several hundred rows, and refreshing these rows takes multiple
REF operations. The activations incurred between the first and
last REFs in the region can cause MIRZA to be insecure, if
the RCT entry is reset too early or too late.

A B C Z A

tREFW

32 REFs First Last
Unsafe?

RRC

Fig. 14. Need for Safe Reset of RCT counters in MIRZA.

Figure 14 shows an overview of the refresh operations of
a bank. The bank contains 128 subarrays. We assume one
subarray per region for RCT. With 8K refreshes per tREFW,
each region can be refreshed with 64 REFs. Without loss of
generality, we assume that at any time, only one subarray is
getting refreshed, so each bank has one register RefPtr that
keeps track of the subarray (and group within the subarray)
being refreshed. We now consider how resetting the RCT entry
can affect the security of MIRZA.

Eager/Lazy Reset (Unsafe): An eager policy resets the RCT
counter at the first REF in the region. And lazy policy resets
the RCT counter at the last REF on the region. However, both
these policies are insecure. For the eager policy, an attacker
could target the last row and issue FTH-1 activations just
before the first REF and another FTH-1 activations between the
first and the last REF. Similarly, for the lazy policy, the attacker
could target the first row and issue FTH-1 activations between
the first and the last REF and another FTH-1 activations
after the RCT counter gets reset. For both policies, a row
can receive 2·(FTH-1) activations without participating in
randomized mitigation (to accommodate this, we would need
to increase the TRHD of MIRZA by FTH/2).

Safe Reset: To do a safe reset, when the region starts getting
refreshed, we copy the RCT entry in a Refreshed-Region-
Counter (RRC) register, and reset the RCT entry. If an ACT
maps to the region undergoing a refresh, it updates both the
RCT and the RRC, and only the RCC is used for the filtering
decision. This safe-reset design ensures security of MIRZA.
This design requires one RRC per bank, if the chip refreshes
one subarray at REF (if the chip interleaves refreshes of two
subarrays, we would need two RRC registers per bank).

https://github.com/hritwik567/mirza-ae
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