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Abstract—In-DRAM Rowhammer mitigation has the potential
to solve the Rowhammer problem without relying on other
parts of the system. In-DRAM mitigation requires space (to
identify the aggressor rows) and time (to perform the victim
refresh). To reduce the storage overheads of tracking, recent
works have developed secure low-cost in-DRAM trackers that
can probabilistically identify aggressor rows. To obtain the time
required for mitigation, these trackers rely on the Refresh
Management (RFM) command introduced in DDR5. As RFM
stalls the bank for a latency of 200ns-400ns, frequent use of RFM
can cause significant slowdowns. For example, scaling the recent
MINT tracker to a threshold of 100 incurs 33% slowdown. The
goal of this paper is to enable low-cost trackers to tolerate ultra-
low thresholds (sub-100) while incurring negligible slowdown.

This paper proposes AutoRFM, a transparent RFM mechanism
that can provide mitigation time to the DRAM chips without
stalling the bank. The key insight in AutoRFM is to leverage the
subarray structure (e.g. each bank contains 256 subarrays) and
perform mitigation on only one of the subarrays. Operations to
all subarrays that are not under mitigation are serviced without
any interruption. If activation occurs to the subarray under
mitigation, the DRAM chip sends an ALERT signal informing the
Memory Controller to retry after a predefined time. As AutoRFM
works best if consecutive requests to the same bank do not get
mapped to the same subarray, we use Randomized Memory Map-
ping to break the spatial correlation between memory accesses.
Furthermore, we also develop a Fractal Mitigation Algorithm
that can tolerate transitive attacks (such as Half-Double) without
requiring recursive mitigations to the same subarray. Our design
ensures that a declined request does not have to wait more
than 200 ns before retrying, thus limiting the slowdown and
avoiding any potential for denial of service. Our evaluations,
with SPEC, GAP, and stream workloads, show that AutoRFM
enables low-cost trackers to tolerate a threshold of as low as 74
while incurring an average slowdown of only 3.1%.

I. INTRODUCTION

Rowhammer is a data-integrity error that occurs when rapid
activations of a DRAM row cause bit-flips in neighboring
rows [21]. Rowhammer is a serious security threat, as it gives
an attacker the ability to flip bits in protected data structures,
such as page tables, which can result in privilege escala-
tion [2], [3], [5]–[7], [46], [49] and breach confidentiality [25].
Rowhammer has been difficult to solve because the Rowham-
mer threshold (TRH ), which is the number of activations
required to induce a bit-flip, has continued to decrease with
successive generations of DRAM, reducing from 140K [21]
to 4.8K [17] in the last decade, as shown in Figure 1(a).
As Rowhammer thresholds continue to reduce, Rowhammer
mitigations must be effective even at low thresholds.

Typical hardware-based mitigation for Rowhammer relies
on a tracking mechanism to identify the aggressor rows and
issue a refresh to the neighboring victim rows [9]. Such
mitigation can be deployed at the memory controller (MC) or
within the DRAM chip (in-DRAM). The in-DRAM approach
is appealing, as it can solve the Rowhammer transparently
within the DRAM chips without relying on other parts of the
system. In this paper, we focus on in-DRAM mitigations.

In-DRAM Rowhammer mitigation requires both space and
time, as shown in Figure 1(b). First, storage for tracking
aggressor rows. The SRAM budget available for tracking the
aggressor rows is quite small (a few bytes), so existing trackers
(such as TRR) cannot track all aggressor rows and can be
broken with stressful patterns [5], [12]. Second, time for doing
victim refresh to perform the mitigation. Although initial in-
DRAM trackers (such as TRR) exclusively relied on borrowing
time during refresh (REF) to perform mitigation, such an
approach is severely limits the amount of time that can be
used for mitigation, thus limiting the tolerable threshold [29].

Although existing low-cost trackers from industry (such as
TRR and DSAC [10]) have been broken, this does not mean
that it is not possible to have secure low-cost in-DRAM track-
ers. In fact, developing secure, low-cost in-DRAM trackers
is an area of active research. Examples of secure low-cost
in-DRAM trackers include PARFM [18], PrIDE [11], and
MINT [37]. These trackers select the activated row with a
given probability. The selection probability determines the
tolerated threshold. For example, for tolerating a threshold
of of 1000, the selection probability is approximately 2.5%.
Tolerating a lower threshold requires selection probability be
increased proportionately.

Even if low-cost trackers can identify the aggressor rows
accurately, the DRAM bank still needs time to perform mit-
igative refreshes. This is especially true at low thresholds when
the tracker performs more frequent selection of aggressor
rows. DDR5 specifications introduce a new command called
Refresh Management (RFM) that can allow the MC to provi-
sion the DRAM chip with the time to perform the mitigation,
as shown in Figure 1(c). The MC counts the activations for
a given bank, and when a specified number of activations is
reached, the MC inserts the RFM command, which stalls the
bank for a specified time (200ns to 400ns). As RFM is a
blocking command, frequent use of RFM can cause significant
slowdowns, thus placing a practical limit on the thresholds
tolerated by low-cost trackers.
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Fig. 1. (a) The trend in Rowhammer thresholds (TRH) (b) Overview of in-DRAM mitigation, which needs a tracker and time to do mitigation (c) Overview
of RFM to provide time to DRAM chips to perform mitigation (d) The slowdown of RFM as the Rowhammer thresholds reduce over time.

The performance overheads of RFM are negligibly small for
the current Rowhammer threshold (800 and higher). However,
at lower thresholds, RFM needs to be invoked frequently. For
example, for a threshold of 100, RFM must be invoked every
4 activations, which causes a slowdown of 33%, as shown
in Figure 1(d). The goal of our paper is to enable low-cost
and secure in-DRAM trackers to tolerate ultra-low thresholds
(sub-100) while incurring negligible slowdowns.

Our solution is based on two observations. First, DRAM
banks consist of a large number of independent modules called
subarrays [22] [30] [33], each with its own Row Buffer.
Typically, a bank contains 256 subarrays (512 rows each).
While mitigation is performed on a subarray, operations can be
performed on other subarrays within the bank. Second, recent
DRAM specifications [14] allows the DRAM chip to use
ALERT to indicate that it needs additional time for mitigation.
We can similarly modify ALERT to indicate that an incoming
request conflicted with a subarray performing a mitigation.
Based on these observations, we propose AutoRFM, a transpar-
ent RFM mechanism that exploits a large number of subarrays
to perform non-blocking RFM mitigations. AutoRFM enables
low-cost trackers to scale to ultra-low Rowhammer thresholds
(sub-100) while incurring negligible slowdown.

When the low-cost tracker identifies an aggressor row, the
subarray corresponding to that row is marked for Rowhammer
mitigation. We call such a subarray, Subarray Under Mitiga-
tion (SAUM). The mitigation causes the SAUM to become
unavailable for a defined time (with a blast radius of 2, we
need to perform 4 victim refreshes, so about 200ns). While
mitigation is performed on SAUM, all requests to the bank
are processed in a normal manner if they map to a sub-array
other than SAUM. If the bank receives an activation request
(ACT) for a row that maps to SAUM, such a request cannot be
serviced until the SAUM becomes free. Therefore, the DRAM
chip inserts the ALERT signal to indicate that the ACT request
has failed and that the memory controller (MC) can retry that
ACT after the specified time (e.g., 200ns).

To ensure that the slowdown from AutoRFM remains low,
we need to satisfy two conditions: (1) Consecutive requests
should have only a negligibly small probability of mapping
to the same subarray, so as to avoid the latency overheads of
conflicting with SAUM. (2) Once the SAUM finishes mitiga-
tion, it must become free to perform the demand activations,
so as to limit the slowdown and potential for denial of service.

To reduce the conflict with SAUM, we break the spatial
correlation between memory accesses using the recently pro-
posed Randomized Memory Mapping, called Rubix [42]. Rubix
uses a low-latency block cipher to convert the line address
into an encrypted line address and uses it to access memory.
Rubix ensures that any activation has a negligible probability
of conflicting with SAUM (1/256 with 256 subarrays). While
Rubix sacrifices row-buffer hits, it improves the bank-level
parallelism, so the impact on performance remains low (1.5%).

Transitive attacks [48] use victim refreshes to inflict
Rowhammer on distant rows [23]. So, mitigation must ensure
that rows that undergo victim refresh can also trigger mitiga-
tion. Recent trackers, such as PrIDE [11] and MINT [37], en-
able rows that undergo victim refresh to also possibly trigger a
mitigation. However, such recursive mitigations can potentially
tie the subarray for several consecutive rounds. Ideally, we
want the subarray to be busy only for a deterministic amount
of time. To that end, we propose Fractal Mitigation (FM),
which is robust to transitive attacks, while incurring only a
single round of mitigation. FM always refreshes the immediate
neighbors on both sides and the distant neighbors with an
exponentially reducing probability (2(1−d)). We analyze the
security of FM and provide a simple implementation. As FM
avoids recursive mitigations, MINT + FM can operate at an
even lower threshold than MINT (e.g., 74 instead of 96).

Our analysis with SPEC, GAP, and stream workloads shows
that AutoRFM allows low-cost trackers to scale to a threshold
of 74 while incurring an average of only 3.1% slowdowns.

Overall, our paper makes the following contributions:
1) We show that RFM latency is the main bottleneck

for scaling low-cost in-DRAM trackers to ultra-low
thresholds. We propose AutoRFM, which performs RFM
transparently and uses ALERT for subarray conflicts.

2) We reduce the rate of subarray conflicts and ALERT in
AutoRFM using randomized memory mapping.

3) We propose Fractal Mitigation that securely defends
transitive attacks without requiring recursive mitigations.

4) We ensure that a subarray is busy for only 200ns
after which it is available for service, thus limiting
performance impact and denial-of-service concerns.

We also compare AutoRFM to PRAC [14]. PRAC requires
significant area overheads and longer cycle times (tRC in-
creases by 10%). AutoRFM is a low-cost means of tolerating
low thresholds while avoiding the overheads of PRAC.



II. BACKGROUND AND MOTIVATION

A. Threat Model

Our threat model assumes that an attacker can issue memory
requests for arbitrary addresses and is free to choose the
policy of the memory system that is best suited for the attack.
We assume that the attacker knows the defense algorithm
but does not have physical access to the system (e.g., the
outcome of the random-number generator). Our defense aims
to prevent Rowhammer from being attacked against all access
patterns, including Half-Double [23]. We declare an attack to
be successful when any row receives more than the threshold
number of activations without any intervening mitigation.
Row-Press [28] attack is out of our scope, as its effects can
be mitigated using alternative techniques [39].

B. DRAM Architecture and Parameters

Figure 2 provides an overview of the DRAM architecture.
DRAM cells store data as charge on the capacitor. DRAM
chips are organized as two-dimensional arrays consisting of
rows and columns. To access the data in DRAM, the row is
accessed using the word-line, and the charge on the DRAM
cells is sensed using a sense amplifier, and the data is stored
in a Row-Buffer. Data can be accessed from the row buffer by
providing the column address. The DRAM chip is divided into
a number of banks (32 or DDR5), with only one row-buffer
per bank architecturally visible to the Memory Controller.
However, internally, each bank consists of smaller independent
units called the subarray [22], [30], each with a dedicated
row buffer and sensing circuit. For servicing a request, the
bank routes the incoming access to the given subarray, and
the routes the data from the subarray to an I/O buffer.
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Fig. 2. DRAM Architecture and Operation

DRAM has deterministic timings, which are specified as
part of the JEDEC standards (see Table I). To access data from
DRAM, the memory controller must first issue an activation
(ACT) to open the row. To access data from another conflicting
row, the opened row must first be precharged (PRE). To ensure
data retention, the data in DRAM are refreshed every tREFW.
To reduce the latency impact of refresh, memory is divided
into 8192 groups, and one REF is issued every tREFI.

Within a tREFI of 3900ns, the tRFC time (410ns) is used
for performing refresh; therefore, given a tRC of 48ns, we can
perform a maximum of 73 activations within tREFI.

TABLE I
DRAM TIMINGS (DDR5 SPECS).

Parameter Description Value
tRCD Time for performing ACT 12 ns
tRP Time to precharge an open row 12 ns
tRAS Minimum time a row must be kept open 36 ns
tRC Time between successive ACTs to a bank 48 ns
tREFW Refresh Period 32 ms
tREFI Time between successive REF Commands 3900 ns
tRFC Time for REF Command 410 ns
tRFM Time for RFM Command 205 ns

C. DRAM Rowhammer Attacks

Rowhammer [21] occurs when a row (aggressor) is fre-
quently activated, causing bit-flips in nearby rows (victim).
The minimum number of activations to an aggressor row to
cause a bit-flip in a victim row is called the Rowhammer
Threshold (TRH). TRH is reported for a single-sided pattern
(TRH-S) or a double-sided pattern (TRH-D). As shown in
Table II, TRH has decreased significantly, from 139K (TRH-S)
in 2014 [21] to 4.8K (TRH-D) in 2020 [17].

TABLE II
ROWHAMMER THRESHOLD OVER TIME

DRAM Generation TRH-S (Single-Sided) TRH-D (Double-Sided)
DDR3-old 139K [21] –
DDR3-new – 22.4K [17]

DDR4 – 10K [17] - 17.5K [17]
LPDDR4 – 4.8K [17] - 9K [23]

Rowhammer is a serious security threat, as an attacker
can use it to flip bits in the page table to perform privilege
escalation [5], [6], [46], [54] or break confidentiality [25].

Solutions for mitigating Rowhammer typically rely on a
mechanism to identify the aggressor rows and then mitigate
by refreshing the victim rows. The identification of aggressor
rows can be done either at the Memory Controller (MC) or
within the DRAM chip (in-DRAM). In-DRAM mitigation can
solve Rowhammer within the DRAM chips without relying on
other parts of the system, and enable DRAM manufacturers
can tune their solution to the TRH observed in their chips.
Therefore, in this paper, we consider in-DRAM mitigations.

D. Secure Low-Cost In-DRAM Trackers

As the thresholds reduce, an attacker can focus the attack
on a larger number of aggressor rows. For current (future)
thresholds, we can have hundreds (thousands) of aggressor
rows per bank. Unfortunately, the SRAM budget available for
tracking within the DRAM chip is quite small (a few tens of
bytes), which is insufficient to track all the aggressor rows
deterministically. Recent research has developed secure low-
cost in-DRAM trackers using probabilistic selection.

PARFM [18]: PARFM buffers the row addresses that incur
an activation. On mitigation, one of the buffered addresses
is selected at random. The size of the buffer depends on the
mitigation window, which determines the tolerated threshold.

PrIDE [11]: PrIDE selects each activation with a probability
(p) and inserts it in a 4-entry FIFO. At mitigation, the oldest
entry is chosen. The tolerated threshold depends on selection
probability (p), loss probability of the buffer, and Tardiness
(extra activations received between insertion and mitigation).
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Fig. 3. Performance Impact of RFM. The average slowdown of RFM-4, RFM-8, RFM-16, and RFM-32 is 33%, 12.9%, 4.4%, and 0.2%. Thus, scaling
low-cost trackers to tolerate ultra-low thresholds (sub-100) is not practical using RFM as it would cause unacceptable slowdowns (average 33%).

MINT [37]: MINT is a recent low-cost secure tracker. As
shown in Figure 4, MINT operates over a window of N
activations. At the start of the window, MINT randomly selects
which of the N slots will be picked for mitigation. At the
end of the window, the selected entry is mitigated, and the
process repeats. MINT is a single-entry tracker and provides
25% lower threshold than PrIDE. MINT can tolerate Transitive
Attacks [48] by selecting from N+1 positions (one position is
reserved for the recently mitigated row, albeit victim refreshes
for this row are performed at an increased distance).
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Fig. 4. Overview of MINT. At each mitigation one of the activation slots from
the upcoming window is marked for mitigation at the end of the window.

As MINT has low storage overheads (single-entry) and it
can operate at lower thresholds than prior low-cost trackers,
we select MINT as the representative low-cost tracker in our
work. We also note that, unlike PrIDE, MINT is guaranteed
to select exactly one row (no more, no less) in a given
window; therefore, the amount of mitigation time for a given
window remains constant. The threshold tolerated by MINT
is purely determined by the window size (see Appendix-A).
Table III shows the threshold (TRH-D) tolerated by MINT as
the window size (W) is varied. To tolerate lower thresholds,
MINT requires shorter window (frequent mitigation).

TABLE III
THRESHOLD TOLERATED BY MINT

Window Size (W) TRH-D (Double-Sided)
4 96
8 182

16 356
32 702

E. Refresh Management (RFM): Finding Time

As DRAM is a synchronous device, it needs to be provi-
sioned with time to perform Rowhammer mitigation (victim
refresh of neighboring rows). At high thresholds (e.g. several
thousand), DRAM can exclusively rely on borrowing time
during Refresh to perform mitigation. However, at a low
threshold, we require frequent mitigations, so relying exclu-
sively on refresh for mitigation becomes impractical.

DDR5 introduced a new command, Refresh Management
(RFM), which allows the Memory Controller (MC) to provide
the DRAM chips the time to perform mitigation (the respon-
sibility of tracking the aggressor rows still remains within
the DRAM chip). The MC keeps track of the number of
activations for each bank in a counter (RAA). When the RAA
of a bank reaches a specified value, the MC inserts an RFM
command to the DRAM chip. The RFM command incurs a
latency (tRFM) of either tRFC/2 (205ns) or tRFC (410ns).
The bank remains inaccessible during RFM, so no demand
operations can be performed on the bank. RFM reduces the
RAA counter by a value of RFMTH. Furthermore, a refresh
operation also reduces RAA by 50% or 100% of RFMTH. We
refer RFM with RFMTH value of N as RFM-N.

F. Performance Impact of RFM: Key Limiter of Threshold

As RFM is a blocking operation, frequent use of RFM
causes significant slowdown, as shown in Figure 3. For these
studies, we vary the RFMTH (window of MINT) from 4 to
32. We assume a tRFM of 205ns, with REF reducing RAA
by RFMTH. We do not place any per-tREFI limit on RFM.

At RFMTH of 32, there is negligible performance loss
(0.2%) with RFM, as banks typically do not receive 32
activations per tREFI, and hence, the RAA counter is reset to
zero at almost every REF. At RFMTH of 16, the performance
overhead is still relatively small (4.4% on average), thus RFM
is a practical means to tolerate a TRH-D of as low as 350.

However, at lower thresholds, the overheads increase sig-
nificantly. At RFMTH of 8, which is equivalent to TRH-D of
180, we observe a slowdown of 12.9%. Furthermore, to scale
MINT to an ultralow threshold (sub-100), we would need an
RFMTH of 4, which would incur unacceptable performance
overheads (33%). The latency overhead due to RFM is thus a
key limiter to scaling low-cost trackers to ultra-low thresholds.

G. Goal: Scaling Low-cost Trackers to Ultra-Low Threshold

As Rowhammer thresholds reduce, ideally, we want to use
secure low-cost trackers to tolerate ultra-low thresholds (sub-
100). RFM is not scalable due to high latency overheads. An
alternative RFM mechanism that enables the DRAM chips to
perform mitigation without blocking the bank can enable these
low-cost trackers to tolerate ultra-low thresholds. The goal of
our paper is to develop such a mechanism. We describe our
experimental methodology before describing our solution.



III. EXPERIMENTAL METHODOLOGY

We use memsim [1], a cycle-level multi-core simulator with
a detailed memory model. Table IV shows our configuration.
We use DDR5 memory timings (see Table I). We use eight
out-of-order cores coupled with a DRAM channel that has a
total of 64 banks. As we are interested in server systems, we
use the memory mapping of AMD Zen [13] (this mapping
exploits bank-level parallelism by keeping two lines of a 4KB
page in the same bank and distributing the page across 32
banks). For this mapping, closed-page policy performs better
than an open-page policy (our design permits row-buffer hits
if a later request gets serviced within tRAS).

TABLE IV
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 8 core, 4GHz, 4-wide, 256 entry ROB
Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory specs 32 GB, DDR5
Banks x Sub-channel x Rank 32×2×1

Rows 128K rows per bank, 4KB rows
Subarrays 256 per bank (512 rows per subarray)

Memory Mapping Policy AMD Zen Mapping [13]

We used 11 SPEC-2017 benchmarks that have at least one
ACT per 1K instruction (ACT-PKI), 6 benchmarks from the
Graph-Analytics Platform (GAP) [40], and 4 benchmarks from
Stream [31]. We use a representative slice of one billion in-
structions. We run the workloads in 8-core rate mode until each
core completes 1 billion instructions. We measure performance
using weighted speedup. Table V shows the characteristics of
the workload, including ACT-PKI and ACT-per-tREFI (per
bank), which highligts the need for RFM (for example, at
RFMTH=32, RFM is rarely needed as RAA gets reset at REF).

TABLE V
WORKLOAD CHARACTERISTICS

(ACT-PER-TREFI IS AVERAGED PER BANK).

Suite Workloads ACT-PKI ACT-per-tREFI
bwaves 35.7 27.7

fotonik3d 26.7 33.0
lbm 25.5 34.4

parest 20.0 28.4
mcf 22.0 31.4

SPEC2K17 roms 13.4 26.7
omnetpp 9.5 29.0

xz 5.9 25.0
cam4 4.2 18.2

blender 1.4 9.7
wrf 1.0 6.6

ConnComp 80.7 35.0
PageRank 40.9 31.5

GAP TriCount 35.2 26.1
BFS 31.1 30.4
BC 16.0 26.3

SSSPath 9.0 23.9
add 12.1 29.2

Stream triad 10.3 28.6
copy 9.3 27.8
scale 7.6 27.1

IV. AUTORFM: ENABLING NON-BLOCKING RFM
For low-cost in-DRAM trackers, scaling to low thresholds

becomes impractical, as the latency overhead of RFM causes a
significant slowdown. RFM, as currently defined, is a blocking
operation, which means a bank becomes unavailable for de-
mand operations during RFM. To enable low-cost in-DRAM
trackers to scale to low thresholds, we propose AutoRFM, a
transparent RFM design that leverages the subarray structures
(already present in DRAM banks) to enable a non-blocking
RFM operation. AutoRFM relies on ALERTs to indicate a
conflict with a subarray undergoing a mitigation.

A. AutoRFM: Overview and Operation
Figure 5 shows an overview of AutoRFM. For simplicity,

we show only one bank. The bank is equipped with a low-cost
tracker (e.g., MINT). With AutoRFM, the memory controller
(MC) no longer sends explicit RFM to the DRAM. Instead,
the DRAM module performs the mitigation transparently. For
example, if MINT selects a row for mitigation and that row is
assigned to subarray SA2, the DRAM bank would perform a
mitigation on SA2. This subarray is called Subarray Under
Mitigation (SAUM). Our design ensures that mitigation is
started only on a precharge operation to the bank; therefore, the
only request that can conflict with the SAUM is a subsequent
activation request to a row that maps to the SAUM.
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Fig. 5. Overview of AutoRFM (SA=Subarray, RB=Row-Buffer, Figure not
to scale). AutoRFM uses subarrays to enable non-blocking RFM.

If a request from the MC maps to a subarray other than
SAUM, the DRAM chip can service it normally, without
any interruption. If the MC sends an ACT request to a row
that maps to the SAUM, the DRAM chip cannot service the
request, so it asserts an ALERT signal. If the MC receives an
ALERT during an ACT operation, it marks the ACT request as
failed.1 This failed request can be re-tried only after a specified
time (tM ). Without loss of generality, our design refreshes
a total of four victim rows, so tM is approximately equal
to 200 ns (four times tRC). Our design ensures that SAUM
becomes free to service demand request after tM time period
(by avoiding recursive mitigations). Thus, an ACT request that
has failed once is guaranteed to succeed upon retrying after
tM . Thus, AutoRFM incurs a deterministic latency overhead.

1As the channel contains multiple chips, an ACT can get declined by only
a subset of chips, and other chips complete the ACT (ALERT is ORed, so
ALERT is asserted). To ensure correctness, the MC sends a precharge for any
failed ACT to ensure all chips have the conflicted row in a closed state.



Similar to RFM, a key parameter for AutoRFM is the num-
ber of activations to the bank that causes one mitigation. We
call this parameter AutoRFM Threshold (AutoRFMTH). Each
bank has a counter that counts the number of activations, and
when it reaches AutoRFMTH, the bank selects the aggressor
row, triggers the mitigation, and resets this per-bank counter.

B. Low-Cost Tracker and Mitigation Schedule

AutoRFMTH determines the window over which MINT
operates. For example, if AutoRFMTH equals 4, then the
window for MINT equals 4 activations (e.g. A, B, C, D) from
which one is randomly selected as an aggressor row. In fact,
MINT pre-decides, at the start of the window, which slot in
the upcoming window will get selected for mitigation. For
example, if MINT had pre-selected the third slot to be selected
for mitigation, then Row-C would get marked as an aggressor,
as shown in Figure 6. In the second window, MINT randomly
selects the second slot (Row-F), and so on.

A B C D

MINT(3)

E F G H

MINT(2)

Mitigate C Mitigate F
I J K L

MINT(4)

PRE

Fig. 6. Timeline of activations and mitigation for AutoRFM Threshold of 4.
MINT identifies an aggressor over 4 activations, and mitigation is performed
on the aggressor at the 4th precharge (mitigation latency is four tRC).

Each ACT operation on a bank is eventually followed by a
precharge (PRE) operation. To simplify our design, we initiate
mitigation only when the last PRE operation occurs in the
window, as it marks the time when the memory controller
infers that no row is open in the bank. Therefore, the MC
would not send any read, write, or PRE operations to the bank.
However, the MC can send an ACT to open a new row.

Without loss of generality, we assume that mitigation is per-
formed by refreshing two rows on either side of the aggressor
row (so, for mitigating Row C, we would refresh C+2, C+1,
C-1, and C-2). As the mitigation keeps the subarray busy for
a period of four tRC, the minimum value of AutoRFMTH
would be 4 activations. We note that even lower value of
AutoRFMTH can be supported if we reduce the number of
rows that receive victim refresh from 4 to 2. However, to keep
our design simple, we do not consider these options.

If the AutoRFMTH is larger than 4, then there would be
times when no subarray is under mitigation, and therefore
no request would have any subarray conflict. Thus, longer
AutoRFMTH would result in a lower slowdown. We are
specifically interested in AutoRFMTH between 4 and 16, as
RFM becomes a low-overhead option beyond RFMTH of 16.

We note that at any time at most one subarray (SAUM) in
a bank is undergoing a mitigation. The SAUM receives no
demand activations while undergoing mitigation, so no row of
SAUM is selected by MINT for mitigation in that window (we
discuss how to handle transitive mitigation of SAUM in the
next section). Therefore, the SAUM is guaranteed to become
free to service demand request during the next window.

C. Changes to the Memory Controller
AutoRFM requires only minor support from the memory

controller (MC). First, it needs the MC to have the ability
to respond to the ALERT signal issued by the DRAM chip
(in response to a conflicted ACT). This means that the ACT
must be considered as failed, so the MC must continue to
infer that there is no open row in the corresponding bank.
Second, the MC needs the ability to retry a failed ACT request.
We propose a simple change to the MC to facilitate both, as
shown in Figure 7. For each bank, the MC keeps a busy bit
and a timestamp when the bank will become free. When an
ACT fails, the corresponding bank is marked as busy, and the
timestamp is set to current time plus tM . When the current
time exceeds the timestamp of the busy bank, the busy bit is
reset. A bank with a busy bit is prevented from sending any
demand requests to the DRAM chip.

MC DRAM
Bank

Busy bit

Timestamp

Fig. 7. Changes to the MC. MC keeps a busy-bit and timestamp (when the
busy bank becomes free) on a per-bank basis. (Figure not to scale)

We note that while a bank encounters a failed ACT, it
is theoretically possible for the bank to service demand op-
erations from subarrays other than the SAUM. This would
require a busy-bit and timestamp for each entry in the request
queue of the memory controller. Our simple design avoids the
complexity of maintaining per-entry metadata and timestamps.
If conflicts are infrequent (as we have a large number of subar-
rays per bank), the simple design provides similar performance
compared to a more complex design.

D. Changes to the DRAM Chip and Interface
AutoRFM also requires minor changes to the DRAM chip

and interface. We note that the subarrays leveraged for Au-
toRFM are already present in the current DRAM chips, so no
change is required to incorporate or use the subarrays.

The DRAM chip needs two changes. First, it needs the
ability to internally perform mitigation on the SAUM for
the row specified by MINT. Performing a mitigation requires
doing a total of four victim refreshes (two rows on each side of
the aggressor row). We note that the DRAM chips already have
circuitry to perform victim refreshes (to support in-DRAM
trackers and to support RFM commands). Second, the DRAM
chip needs to store the address of the SAUM, and compare
the subarray of the incoming ACT request to the SAUM. If
the results match, then the DRAM chips skips doing the ACT
operation and informs the MC of the failed ACT.

AutoRFM also requires support from the DRAM interface
to allow the DRAM chips to inform the MC that an ACT
has failed. To facilitate this, we reuse the ALERT signal
(similar to recent DDR5 specifications [14] that reuse ALERT
to convey that DRAM needs more time to perform mitigation).
An ALERT in response to ACT indicates the ACT has failed.
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Fig. 8. Impact of memory mapping policy on AutoRFM-4 (a) Slowdown and (b) Likelihood of ALERT per ACT (due to conflict with SAUM), with the
baseline mapping (AMD-ZEN) and Randomized Mapping (Rubix). Baseline mapping has a high rate of ALERT (3.7%, on average) and has a significant
slowdown (16.5% on average). Randomized mapping reduces the ALERT probability to 0.2% and has a significantly lower slowdown (3.1% on average).

E. Impact of Memory Mapping

With 256 subarrays in a bank, we would expect the likeli-
hood of an ACT to conflict with SAUM to be small. However,
the likelihood of a conflict is strongly dependent on the
memory mapping, which decides not only the line-to-bank
mapping but also the set of lines that are co-resident in a given
row. If a mapping places an entire 4KB page in a row, then the
likelihood of consecutive requests mapping to the same row
(and hence the same sub-array) is significant, and therefore
the likelihood of conflict also becomes significant.

Our baseline mapping (AMD-Zen) places two lines from
a 4KB page within the same row and spreads the 4KB page
over 32 banks to boost the bank-level parallelism. Therefore,
it is possible for two requests from the same page, occurring
in a short time of each other, to cause two ACTs and the
second ACT request to get directed to the SAUM (caused by
mitigation for the first request). Therefore, the second request
will have a conflict, trigger ALERT, and cause slowdown.

Figure 8(a) shows the slowdown with AutoRFM-4 (Au-
toRFMTH is set to 4), with the baseline memory mapping. We
observe that AutoRFM-4 incurs significant slowdowns: more
than 40% for roms, and more than 30% for fotonik3d
and lbm. On average, with the baseline memory mapping,
AutoRFM-4 incurs a slowdown of 16.5% on all 21 workloads.

The key reason for the high slowdown of AutoRFM-4 is the
high rate of conflicts under the baseline mapping. Figure 8(b)
shows the ALERT per ACT (as an ACT can be declined only
once, this metric indicates the probability of ALERT) under
the baseline memory mapping. Ideally, with 256 subarrays, we
would expect a conflict probability of less than 1%. However,
with the baseline mapping, we observe a significantly higher
rate of conflicts: 7 workloads have more than 5% probability of
conflict. On average, across the 21 workloads, the probability
that an ACT can get an ALERT is 3.7%.

F. Reducing Conflicts with Randomized Memory Mapping

The slowdown of AutoRFM can be reduced with a mem-
ory mapping that decreases the likelihood of conflicts with
SAUM. Our key insight is to use randomization to break
the spatial correlation between the line-to-subarray mapping.
With randomization, the likelihood that a given line maps to
a particular subarray within the bank will be 1/256 regardless
of the spatial location within the access stream. To design
a practical Randomized Memory Mapping, we leverage the
recent proposal called Rubix [42].

Rubix randomizes the line-to-row mapping using the low-
latency K-cipher [24] (latency of 3 cycles). The memory
controller converts a given line-address into an encrypted-line-
address and uses the encrypted-line-address to access memory.
With address encryption, we break any spatial correlation
between the given line-address and banks, subarrays, and rows.

While Randomized Memory Mapping sacrifices row-buffer
locality, it increases the bank-level parallelism as the access
stream gets spread (almost uniformly) across all the banks in
the system. The increased bank-level parallelism can offset the
performance lost due to reduced row-buffer hits.

Figure 8(a) shows the slowdown with AutoRFM-4, with
randomized mapping. The average slowdown gets reduced to
3.1%. This occurs mainly due to the significant reduction in
the probability of conflict for ACT. The slight speedup for
bwaves is because of the higher bank-level parallelism due
to randomized mapping. Figure 8(b) shows the ALERT per
ACTs. On average, our mapping reduces the ALERT per ACT
to 0.22% (16x reduction compared to AMD-Zen mapping).2

We note that out of the 3.1% slowdown, 1.5% slowdown is
due to randomized mapping and 1.6% is due to conflicts.

2We note that this is lower than 1/256 (0.4%), as our workloads do not use
all the activation slots. If a bank has only 50% of the activation slots used,
then for 50% activations, there is no SAUM. So, the conflicts become 0.2%.



V. FRACTAL MITIGATION FOR TRANSITIVE ATTACKS

Thus far, we have assumed that the mitigative action (of
refreshing 2 victim rows on either side of an aggressor row) is
sufficient to ensure security. Unfortunately, at low thresholds,
the mitigative action of victim refresh can itself be used to
cause Rowhammer attacks. In this section, we first describe
the impact of such Transitive Attacks and the current means of
mitigating them via Recursive Mitigation. We then describe the
pitfalls of recursive mitigation and propose Fractal Mitigation
to overcome those shortcomings.

A. Transitive Attacks and Impact

Victim refresh replenishes the charge on the neighboring
victim rows. At low thresholds, the act of victim refresh can
itself be used to perform a Rowhammer attack on a distant
row (for example, Half-Double [23]). Such indirect attacks are
called Transitive Attacks [48]. Figure 9 (a) shows an example
of a transitive attack. Row-E is subjected to a lot of activations,
which causes victim-refresh on Row-C, Row-D, Row-F, and
Row-G. The activations caused by these victim refreshes can
be enough to cause errors in Row B and Row H. This becomes
a severe problem at low Rowhammer thresholds (sub-1000) as
it requires frequent victim-refresh operations.
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Fig. 9. (a) Transitive Attack (b) Defense with Recursive Mitigation.

B. Recursive Mitigation Defense and Pitfalls

To handle transitive attacks, MINT uses recursive mitiga-
tion, where the victim-rows themselves have the possibility
of triggering a subsequent mitigation. Figure 9(b) shows an
example of transitive mitigation where victim-refreshes of
C, D, F, and G trigger (with some probability) a level-2
mitigation, which performs victim refreshes for A, B, H and I.
The concept is applied recursively, where level-2 can trigger
a level-3 mitigation (with some probability), and so on.

For a window of N activations, MINT probabilistically
selects from N+1 slots, with 1 slot reserved for recursive
mitigation (by increasing the mitigation level). Thus, with
N=4, MINT selects each demand activation with only 20%
(and not 25%) probability. The lower probability of selection
increases the threshold tolerated by MINT.

Another important impact of recursive mitigation is that
it can keep the same subarray busy for several consecutive
rounds (e.g. 10 rounds every second). Thus, the time SAUM is
busy can become non-deterministic (200ns to 2000ns), which
can cause repeated failures for a given ACT. Ideally, we
want AutoRFM to have constant latency overheads to avoid
slowdowns and alleviate any denial-of-service concerns.

C. Our Proposal: Fractal Mitigation

To avoid recursive mitigation, we propose Fractal Mitiga-
tion (FM). The key insight with FM is to use the mitigative
refreshes probabilistically. Two of the four victim refreshes
always refresh the immediate neighbors, which we refer to
as the distance 1 (d=1) neighbor. The remaining two victim
refreshes are directed to distant neighbors, where each distance
“d” neighbor has a probability 2(1−d) of getting refreshed. So
distance 2 neighbors are refreshed with probability 1/2, d=3
with 1/4, d=4 with 1/8, etc., as shown in Figure 10(a).
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d = 2 + 3 = 5
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Fig. 10. Fractal Mitigation (a) Overview, d=1 is always refreshed, and the
other pair is selected probabilistically (b) Implementation using a Random
Number (Rand), the distance (d) to refresh equals 2 + leading-zeros in Rand.

To implement FM in a simple manner, we leverage the
insight that the number of leading zeros in a random number
(Rand) follows an exponentially reducing distribution. So, no
leading zeros occur 50% of the time, one leading zero occurs
25% of the time, and so on. We use a 16-bit random number,
as the likelihood of d=18 getting refreshed is negligibly small
(even if the same row is activated continuously, d=18 will
receive less than 1 victim refresh per 32ms). With FM, we can
handle transitive attacks while ensuring that there are only 4
victim refreshes per mitigation without requiring subsequent
mitigative actions (specifically for transitive attacks).3

D. Security of Fractal Mitigation

An attacker could use the mitigative refreshes generated by
FM to cause unmitigated activations on distant neighbor rows.
In Appendix B, we analyze the security of FM under such
attacks. Our model shows that such FM attacks become viable
only at thresholds of TRH-D below 53. Given that AutoRFM
achieves a minimum TRH-D of 74, direct attacks to the row
are the most potent way to cause Rowhammer, even with FM.

E. Results: Impact on Threshold and Performance

Fractal Mitigation offers two key advantages. First, it avoids
recursive mitigations on the same subarray, thus allowing
AutoRFM to have deterministic latency. Any ACT that gets
declined will find the SAUM free for service after the miti-
gation time (200ns). Second, it allows MINT to choose from
N slots instead of (N+1); therefore, it has a higher probability
of selection and can tolerate a lower Rowhammer threshold.

3We observe that, with FM, the d=2 neighbors get refreshed with 50%
probability, which is different from the baseline mitigation that always
refreshes both d=1 and d=2. Recent characterization [26] shows that the
neighbor at d = 2 suffers less than 10% charge loss compared to the neighbor d
= 1, so refreshing both of them with the same probability is wasteful. Instead,
FM uses the 2 victim refreshes judiciously over more distant neighbors.
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Fig. 11. Performance Impact of RFM and AutoRFM. The average slowdown of RFM-4 and RFM-8 is 33% and 12.9%, respectively. Whereas, with AutoRFM,
it reduces to 3.1% and 2.3% respectively. We note that AutoRFM uses both Randomized Mapping and Fractal Mitigation.

Table VI shows the performance and the tolerated threshold
(TRH-D) with recursive mitigation (RM) and fractal mitigation
(FM) as the AutoRFM threshold is varied. FM achieves a
lower threshold at the same performance overhead as RM, or
a lower slowdown for a given TRH-D. With AutoRFMTH of
4 (the minimum possible value for our design), FM achieves
a TRH-D of 74 instead of 96 with RM. Thus, our design can
tolerate thresholds as low as 74 while having a low slowdown.

TABLE VI
SLOWDOWN AND TOLERATED THRESHOLD (TRH-D)

FOR RECURSIVE-MITIGATION AND FRACTAL MITIGATION.

Recursive Mit. Fractal Mit.
AutoRFMTH Slowdown TRH-D TRH-D

4 3.1% 96 74
5 2.8% 117 96
6 2.7% 139 117
8 2.3% 182 161

VI. RESULTS AND ANALYSIS

A. Comparison with RFM

Both RFM and AutoRFM provide the DRAM chips with the
time to perform mitigation. RFM does so in a blocking manner,
as the bank performing RFM is prohibited from performing
any other operations for a given time period (tRFM). With
AutoRFM, the mitigations become non-blocking, as only the
subarray under mitigation (SAUM) is kept busy, and all other
subarrrays can still service memory requests. Figure 11 shows
the slowdown with RFM and AutoRFM as the RFMTH and
AutoRFMTH changes from 4 to 8.

RFM incurs significant slowdowns for RFM-4. Several
workloads incur almost 50% slowdown. On average, RFM-4
incurs a 33% slowdown, which makes RFM unappealing for
use in the sub-100 threshold regime. However, AutoRFM-4
has an average slowdown of only 3%. As thresholds increase,
the gap between RFM and AutoRFM reduces. For example,
the slowdown of RFM-8 is 13%, while for AutoRFM-8 it is
2.3%. We note that the speedup of bwaves is because Au-
toRFM uses Randomized Memory mapping, which increases
bank-level parallelism compared to the AMD-Zen mapping.

We also note that for the same value of RFMTH or
AutoRFMTH, the AutoRFMTH scheme has a lower tolerable
threshold. This is because AutoRFM uses Fractal Mitigation.
We note that our idea of Fractal Mitigation can also be applied
to designs that use RFM to get reduced thresholds.

B. Power and Energy Overheads

AutoRFM incurs power overhead for two reasons. First,
additional activations due to the randomized mapping (18%
higher than baseline). Second, the mitigative refreshes for
rowhammer mitigation. To compute DRAM power, we use
the publicly available DRAM-power model provided by Mi-
cron [32]. We configure it to have the parameters based on
the DDR5. Figure 12 shows the DRAM power for baseline,
Rubix, AutoRFM-8, and AutoRFM-4. We break the power into
four components: (a) Activations and Read/Write operations,
(b) Other, indicating standby and termination, (c) Refresh, and
(d) Mitig, indicating Rowhammer Mitigation. We assume the
baseline and Rubix (standalone) do not do any mitigations.

0 50 100 150 200 250 300 350 400 450
DRAM Power Consumption (mw)

Baseline
Rubix

AutoRFM-8
AutoRFM-4

ACT+RD/WR Other Refresh Mitig

Fig. 12. DRAM power for baseline, Rubix, AutoRFM-8, and AutoRFM-4.
Rubix incurs extra actiations, and AutoRFM incurs mitigations. On average,
AutoRFM-8 and AutoRFM-4 increase average power by 65mW and 92mW.

Standalone Rubix incurs a power overhead of 36 mW (due
to extra activations). Additionally, the mitigations required for
AutoRFM-8 and AutoRFM-4 incur an overhead of 28mW and
55mW, respectively. Overall, AutoRFM incurs an additional
power overhead of 65mW-92mW. If DRAM contributes 10%
to the total system power, AutoRFM would increase the overall
system power by 1.25%-2.5%. We also note that if the system
is idle, AutoRFM does not incur any power overheads, so
AutoRFM also has a nice property of energy proportionality.

C. Storage Overheads

AutoRFM incurs small storage overhead, both at the mem-
ory controller and within the DRAM chips. At the memory
controller, we need a busy bit and a 15-bit timestamp (a total of
2 bytes) for each bank. With 64 banks, the memory controller
needs 128 bytes of SRAM. Each DRAM bank requires storage
to identify SAUM (1 valid bit + 8 bits) and the MINT tracker
(4 bytes), so a total of 5 bytes per bank. The DRAM chip
also needs a PRNG for random numbers.



VII. RELATED WORK

A. PRAC and ABO
The inability of the DRAM industry to solve Rowhammer

securely and efficiently has led to revised DDR5 specifica-
tions [14], which includes two optional features: Per-Row
Activation-Counting (PRAC) and Alert Back-Off (ABO). PRAC
solves the space issue with Rowhammer tracking by redesign-
ing the DRAM array to keep a per-row activation counter,
which gets incremented on each activation to the row (the
DRAM timings are increased to do the read-modify-write of
the counter). ABO solves the time issue with Rowhammer
tracking by allowing the DRAM chip to assert the ALERT
signal, if it requires time to perform mitigation. PRAC+ABO
represents not only the biggest changes to DRAM arrays and
interface but also a principled means to tolerate Rowhammer.

Unfortunately, PRAC incurs both significant area overheads
and performance overheads. The recent Hynix design [20]
reports that the per-row counters incur significant area over-
heads. As PRAC increases the DRAM timings (tRP increases
by almost 150%), it also incurs significant performance
overheads, even at thresholds where an alternative low-cost
tracking would incur negligible overheads.

ABO specifications permit a few activations before stalling
for ALERT (in order to limit denial-of-service attacks); how-
ever, an attacker can use these inter-ALERT activations to
cause significantly more activations on an attack row compared
to the ALERT thresholds. Recent works [34], [36] show
that such attacks can cause 20-30 additional activations, so
PRAC+ABO is viable only for thresholds of greater than 50.
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Fig. 13. Average slowdown of PRAC, RFM, and AutoRFM with varying
thresholds. PRAC incurs a slowdown of at least 4% regardless of threshold
due to increased tRC. RFM incurs significant slowdowns for thresholds below
300. AutoRFM scales to sub-100 thresholds with slowdown lower than PRAC.

Figure 13 shows the average slowdown for PRAC+ABO
(implemented with MOAT [36]), RFM, and AutoRFM, as the
tolerated threshold is varied. For PRAC+ABO, even at high
thresholds, there is a 4% slowdown, due to longer DRAM
timings to update counters. Therefore, PRAC not only incurs
significant area overheads but also has non-negligible slow-
downs, even for the current thresholds. RFM incurs negligible
slowdown at thresholds of 700 and higher. However, RFM
overheads increase significantly as the thresholds reduce, in-
curring 13% at a threshold of 180. The slowdown of AutoRFM
is 2% at near-term thresholds (200-800) and increases to 3.1%
at ultra-low thresholds (74). Thus, AutoRFM offers a low
overhead option of scaling to low Rowhammer thresholds.

B. Self Managed DRAM (SMD)

As DRAM is a deterministic device, a scheduled oper-
ation (read, write, ACT) must finish within the predefined
time. This requirement means that if DRAM chips need to
perform internal maintenance operations (such as refresh or
scrub or Rowhammer mitigation), such operations must not
interfere with the commands from the memory controller.
Thus, maintenance operations require support from JEDEC
specifications, which hinders the adoption of new maintenance
operations. A recent work, Self-Managed DRAM (SMD) [8],
eases the adoption of maintenance operations by splitting the
memory into regions and performing maintenance on at-most
one region. If an incoming ACT conflicts with the region under
maintenance, it is declined using a ACT_NACK signal. SMD
analyzed three maintenance operations: Refresh, Rowhammer
mitigation, and Scrubbing. While AutoRFM framework is sim-
ilar to SMD, AutoRFM is designed explicitly for Rowhammer
mitigation at ultra-low (sub-100) thresholds and solves two
critical bottlenecks necessary to enable such a framework to
tolerate ultra-low Rowhammer thresholds efficiently.

1. Breaking Spatial Correlation: At ultra-low Rowhammer
threshold (sub 100), mitigation is frequent. For example, on
average, every 4th activation to a bank triggers a mitigation.
So, accesses that occur in a short succession of each other must
not get mapped to the same row/subarray. Otherwise, they
will get declined due to a conflict with mitigation and suffer
slowdown. SMD evaluated PARA with p=1/5 (per Section 9.8
of [8]) and reports 11.3% slowdown, indicating that SMD
incurs high overheads for tolerating ultra-low Rowhammer
threshold. This is similar to our analysis (see Figure 8), which
shows that with conventional mapping, AutoRFM causes a
slowdown of 16.5% at p=1/4 (MINT window of 4). This slow-
down occurs mainly because accesses are spatially correlated
and go to similar rows/subarray. AutoRFM breaks the spatial
correlation in accesses via Rubix-based randomized mapping,
reducing the slowdown to 3.1%. Our work demonstrates that
randomized mapping is vital for mitigating low thresholds.

2. Tolerating Transitive-Attacks: Transitive attacks are a
significant vulnerability at ultra-low threshold. For example,
at TRH=100 and p=1/4 (row selected for mitigation with 25%
probability), inflicting just 400 activations on a row triggers
100 mitigations, which are enough to cause transitive failures.
SMD does not discuss how to tolerate transitive attacks. While
SMD analyzes the impact of the different blast radius, a higher
blast radius is insufficient to tolerate transitive attacks, as the
row immediately after the blast radius experiences bit-flips.

We note that, treating rows undergoing victim refreshes as
also eligible for PARA is not a viable way to tolerate transitive
attacks at ultra-low thresholds. For example, if PARA had
p=1/4 and blast-radius of 2, then, after mitigation, PARA will
select one victim row for transitive mitigation, which in turn
will trigger one more row for transitive mitigation, and so on.
Thus, the number of transitive victim refreshes keeps growing.

Our proposed Fractal Mitigation protects AutoRFM from
transitive attack and incurs deterministic latency overheads.



C. Using RFM for Efficient Mitigation

RFM is a primary means of providing the in-DRAM
tracker to perform frequent mitigations. Prior research has
used RFM to reduce the storage overhead of tracking and
scaling probabilistic trackers to lower thresholds. For example,
both Mithril [18] and ProTRR [29] use RFM to tolerate low
thresholds or to reduce the number of counters in the tracking
structures or both. PARFM [18], PrIDE [11], and MINT [37]
use RFM to provide more frequent mitigations (compared to
REF) and enable the tracker to tolerate low thresholds. For
example, PrIDE uses RFM-16 to obtain a TRH-D of 400.

D. Rowhammer Tracking and Mitigation

Several proposals reduce the SRAM overhead of aggressor-
row tracking. Example of such works includes CAT [47],
TWiCE [27], and Graphene [35]. START [43] uses the last-
level cache for tracking but can cause significant LLC capacity
loss. Examples of low-cost in-DRAM trackers that were
broken include TRR and DSAC. As our objective is secure
mitigation, we do not consider such trackers in our study.
CRA [16] and Hydra [38] keep the counters in DRAM and use
caches or filters to reduce the DRAM lookups for counters,
however, they can still cause significant slowdowns.

Our design uses victim refresh for mitigation. RRS [41],
AQUA [45], SRS [51], SHADOW [50] perform mitigation
with row migration, whereas, Blockhammer [52] uses rate
limits. REGA [30] changes the DRAM module to provide
a mitigating refresh on each demand activation. However, it
does not scale to sub-100 thresholds. HiRA [53] changes the
interface to allow multiple activations per bank.

E. ECC to Tolerate Rowhammer
Recent work has used ECC to tolerate Rowhammer failures.

For example, SafeGuard [4], CSI-RH [15], PT-Guard [44], and
Cube [19] modify the ECC codes to correct Rowhammer fail-
ures. Unfortunately, with such solutions, uncorrectable failures
can still occur, leading to data loss.

VIII. CONCLUSION

Although low-cost in-DRAM trackers can probabilistically
identify aggressor rows, they require frequent mitigation.
Refresh Management (RFM) can provide DRAM chips with
the time required for mitigation; however, it incurs significant
overhead at low thresholds (33% slowdown for a threshold
of 100). In this paper, we propose AutoRFM, a transparent
RFM design that uses the intra-bank subarrays to perform
mitigation without requiring the bank to be stalled. We show
that AutoRFM, when combined with Randomized Mapping
and Fractal Mitigation, can tolerate thresholds as low as 74
while incurring a slowdown of only 3.1%. We also show that
AutoRFM provides a more cost-effective alternative for scal-
ing to low thresholds than the recent PRAC+ABO proposal.
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APPENDIX-A: ANALYTICAL MODEL FOR MINT+RFM

Consider MINT with a window of W activations. For
MINT, the best attack pattern contains unique W rows acti-
vated continuously in a circular fashion. For W=4, the access
pattern can be represented as (ABCD)K for K repeats.

Consider Row-A. The probability that this row gets selected
for mitigation in one iteration is p=1/W. Let the single-sided
Rowhammer threshold (TRH-S) be T , then the probability that
the row is not selected in T iterations is given by Equation 1.

PT = (1− 1/W )T (1)

Given the selection probability is 1/W, the average number
of iterations for receiving a mitigation for Row A is W. In
every mitigation, we start a new epoch for Row A, and the
probability of failure for that round is PT . Let tM be the
mitigation time (RFM latency, 200 ns in our case), then the
total epoch time (tE) is given by Equation 2.

tE = W 2 · tRC + tM (2)

Each epoch has failure probability of PT . Equation 3 shows
the failure rate (FRate) per unit time for attacking one row.

FRate =
PT

tE
=

(1− 1/W )T

W 2 · tRC + tM
(3)

If we attack all W rows in the window, the overall failure
rate (FRateW ) across all rows is given by Equation 4.

FRateW = W · (1− 1/W )T

W 2 · tRC + tM
(4)

Mean Time to Failure (MTTF) is the inverse of the failure
rate. Equation 5 shows the MTTF.

MTTF =
W · tRC + tM/W

(1− 1/W )T
(5)

Rearranging Equation 5, we determine the threshold (T) and
TRH-D as shown in Equation 6 and Equation 7.

T = ln(
W · tRC + tM/W

MTTF
)/ln(1− 1/W ) (6)

TRHD = T/2 = ln(
W · tRC + tM/W

MTTF
)/2 · ln(1− 1/W )

(7)
Figure 14 shows the TRH-D tolerated by MINT in varying

window sizes (W) for Recursive and Fractal Mitigation.
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Fig. 14. Threshold tolerated by MINT versus window size



APPENDIX-B: SECURITY OF FRACTAL MITIGATION

An adversary can do continuous activations on an aggressor
row and try to use the victim refreshes from Fractal Mitigation
(FM) to attack. In this section, we model such an attack.

Let there be N episodes of FM due to mitigation of an
aggressor row. Consider a row R that is a distant neighbor of
the aggressor row. This row has two neighbors, R− and R+,
as shown in Figure 15. R−, R, and, R+ receive mitigative
refreshes due to to FM with probabilities p, p/2, and p/4,
respectively. To cause bit flips in R, we want to maximize the
activations in R+ and R- (total Damage) while ensuring a high
probability that R receives no activations (escape).

R 
R-

R+

p

p/4
p/2None Damage on R: N*p + N*p/4

Escape Prob (R): (1-p/2)^N

After N episodes of FM:

Fig. 15. Attack R by maximizing ACTs on R+ and R- while no ACT on R.

The amount of Damage on R is given by Equation 8.

DamageN = p ·N + 0.25 · p ·N = 1.25 · p ·N (8)

The escape probability (Pescape) is given by Equation 9.

Pescape = (1− p/2)N ≈ e−pN/2 ≈ e−Damage/2.5 (9)

For our target-MTTF of 10K years, the escape probability
is 10−18, so the maximum Damage is given by Equation 10.
Thus, FM is safe for systems that have a TRH-D ≥ 53.

e−Damage/2.5 = 10−18 ⇒ Damage = 104 ⇒ TRHD = 52
(10)

Mixed Attacks: An attacker could try to combine the dam-
age on an attack row R using both direct activations on
neighbors and the indirect damage using FM. However, this
results in a less effective attack than simply using direct
activations. We note that the escape probability for damage
due to direct activations on neighbors with MINT is given by
(1− 1/W )Damage, where W is the MINT window. Figure 16
shows the escape probability for both FM and MINT-4 as the
damage count is varied. The TRH-D with FM is 52, and with
MINT is 74. If the attacker combines the two patterns, say 40
activations from FM (point X) and 80 activations from MINT
(point Y), to cause 120 total activations, the total probability
of escape will be 10−7×10−10, so 10−17, which is 100x lower
than the 10−15 with MINT alone (point Z). Thus, even in the
presence of FM, direct attacks on neighboring rows are still
the fastest and most viable way to cause Rowhammer. Thus,
such attacks do not impact the threshold for MINT designs
with TRH-D ≥ 53 (so, both MINT-4 and MINT-8 are secure).
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Fig. 16. Escape probability as a function of Damage (for MINT and FM)

APPENDIX-C: IMPACT OF RUBIX ON RFM

As Rubix-based memory address-space randomization is
highly effective at reducing the slowdown for AutoRFM, it
would be reasonable to think that it can also help reduce the
overheads of RFM. Figure 17 shows the average slowdown
from RFM on a system with AMD-Zen mapping and with
Rubix mapping, both normalized to the respective baseline
system without RFM. On average, RFM incurs higher over-
heads on the Rubix system (e.g. 35.1% vs. 33.1% for RFM-4).

This may seem counter-intuitive, but it is expected behavior.
Rubix spreads the activations over a larger number of rows (so
it reduces the variance of ACT per row), but overall it increases
activations to the bank (so it increases the mean ACTs/row).
RFM is issued by the bank by counting the number of ACTs
to the bank, so, with more activations per bank due to Rubix,
we get more RFMs and a higher slowdown for Rubix+RFM.
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Fig. 17. Impact of RFM on Rubix and Zen. Rubix has higher slowdowns.

APPENDIX-D: AUTORFM WITH OTHER TRACKERS

Similar to RFM, AutoRFM is a generalized solution that can
work with any DRAM tracker (randomized or deterministic).
We briefly discuss AutoRFM with PrIDE [11] and Mithril [18].

PrIDE: We sample with probability 1/4 (1/8) for AutoRFM-
4 (8) and insert the entry in a FIFO buffer. Once every 4 (8)
ACTs to the bank, we mitigate one entry from the FIFO buffer.

Mithril: As Mithril is counter-based, the tracking remains
unchanged. For AutoRFM-4 (8), once every 4(8) activations
to the bank, we mitigate the row with the highest count.

Similar to RFM, the slowdown of AutoRFM is not de-
pendent on the in-DRAM tracker and is dedicated only by
AutoRFMTH. Figure 18 shows the TRHD tolerated by PriDE,
MINT, and Mithril. With AutoRFMTH-4 all three trackers can
tolerate sub-125 TRHD. Mithril needs > 30K entries/bank.
MINT has a lower threshold and storage than PrIDE.
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Fig. 18. The TRHD tolerated by PrIDE, MINT, and Mithril using AutoRFM.
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