
Reducing Read Latency of Phase Change Memory

via Early Read and Turbo Read

Prashant J. Nair† Chiachen Chou† Bipin Rajendran‡ Moinuddin K. Qureshi†

†School of Electrical and Computer Engineering

Georgia Institute of Technology
{pnair6,cchou34,moin}@ece.gatech.edu

‡Department of Electrical Engineering

Indian Institute of Technology, Bombay
bipin@ee.iitb.ac.in

Abstract—Phase Change Memory (PCM) is an emerging
memory technology that can enable scalable high-density main
memory systems. Unfortunately, PCM has higher read latency
than DRAM, resulting in lower system performance. This paper
investigates architectural techniques to improve the read latency
of PCM. We observe that there is a wide distribution in cell
resistance in both the SET state and the RESET state, and that
the read latency of PCM is designed conservatively to handle
the worst case cell. If PCM sensing can be tuned to exploit the
variability in cell resistance, then we can get reduced read latency.
We propose two schemes to enable better-than-worst-case read
latency for PCM systems.

Our first proposal, Early Read, reads the data earlier than the
specified time period. Our key observation that Early Read causes
only unidirectional errors (SET being read as RESET) allows
us to efficiently detect data errors using Berger codes. In the
uncommon case that Early Read causes data error(s), we simply
retry the read operation with original latency. Our evaluations
show that Early Read can reduce the read latency by 25% while
incurring a storage overhead of only 10 bits per 64 byte line.
Our second proposal, Turbo Read, reduces the sensing time for
read operations by pumping higher current, at the expense of
accidentally switching the PCM cell with small probability during
the read operation. We analyze Error Correction Codes (ECC)
and Probabilistic Row Scrubbing (PRS) for maintaining data
integrity under Turbo Read. We show that a combination of
Early Read and Turbo Read can reduce the PCM read latency
by 30%, improve the system performance by 21%, and reduce the
Energy Delay Product (EDP) by 28%, while requiring minimal
changes to the memory system.

Keywords—Phase Change Memory, Read Latency, Error De-
tecting Codes, Berger Codes, ECC, Reliability, Read Disturbance

I. INTRODUCTION

Phase Change Memory (PCM) is one of the leading emerg-
ing technologies [1, 2, 3] that can be used for scaling capacity
for future memory systems. While PCM has the advantage of
better scalability and non volatility, it has the disadvantage of
higher read latency (compared to DRAM), higher write latency
and write power, and limited write endurance. A significant
research effort has gone in addressing the limited endurance
of PCM using either wear leveling techniques [4, 5] or efficient
sparing of worn out cells [6, 7, 8]. Furthermore, recent research
has also addressed the problem of long write latency [9, 10]
and limited write bandwidth [11, 12]. However, there is not as
much effort in the architectural domain to address the higher
read latency of PCM. Unfortunately, performance impact due
to higher read latency of PCM continues to be a critical ob-
stacle for deployment of PCM as main memory. One potential
solution to address the high read latency of PCM is to have

a Hybrid Memory System [2], which combines PCM with a
DRAM buffer. However, even with a hybrid memory system,
the higher read latency of PCM continues to be a problem
for accesses that go to main memory. Our studies show that
there are significant gains possible if we address the problem
of higher read latency of PCM.

Data is stored in PCM in the form of resistance. PCM
cells can be in two states: crystalline (SET) and amorphous
(RESET). Read and write operations in PCM are performed by
passing current. Figure 1(a) shows the read and write pulses
for operating a PCM cell. For converting a cell to the SET
state, a current pulse that heats the cell above crystallization
point in applied for a long time. For RESET, a narrower pulse
with higher current is applied. For reading, the voltage (Vrd)
is kept low enough compared to the SET voltage, and it takes
a time duration of Trd to sense the cell resistance. Given that
PCM cells have a variation in the cell resistance in either of
the two states (as shown in Figure 1(b)), the sensing is done
at a point that is intermediate between the highest resistance
SET cell (cell A) and the lowest resistance RESET cell (cell
B). Sensing is typically done by raising the bit-line voltage to
Vrd and discharging it through the cell to a sense amplifier,
where it is compared with a reference voltage (Vref) [13, 14].

The time for detection (Tsense) is higher for higher re-
sistance state, as it takes longer to discharge. To reduce the
sensing time, the reference resistance (Rref (corresponding to
the reference voltage) is kept close to cell A [15] . To avoid
data sensing errors, the time for sensing the PCM cell gets
determined by the worst-case cell resistance in the SET state.
Instead of designing to handle the worst-case cell, if we could
exploit the variability in PCM devices, then we can reduce
the its read latency in common case and also enable efficient
scaling. However, to maintain reliable operation, we need to
equip the system to handle occasionally occurring data errors.
We propose two designs to reduce the read latency of PCM.

Our first proposal, Early Read, enables the sensing circuitry
of PCM to latch the output of the sense amplifier before the
specified sensing time (Trd). While Early Read reduces the
sensing time for common case cells, it can cause a small
fraction of cells to give data errors. Typical memory system
are designed such that the probability of a failure is negligibly
small (less than 10−15 per read operation [16])1. However,
for Early Read, Rref is modulated to lower sensing latency
at the expense of higher error rates from the sensing circuitry.

1The BER target of 10−15 is dictated primarily by the link error rate,
irrespective of the memory technology (PCM or DRAM) [16]. In our studies,
we use a default target BER of 10−16 for the PCM cells. Our proposed
solutions become even more effective when the system is designed to target
much lower BER (we analyze the impact of varying BER in Section V-F)

309978-1-4799-8930-0/15/$31.00 ©2015 IEEE

TRESET

SET RESET

A B

(d)

VRESET

VSET

Vrd

(c)(a) (b)

TSETTrd LogR Rref

A B

Rref

SET RESET SET RESET

LogR

BA

Rref LogR

RESET
READ AS

BitFlip?

Higher Vrd Lower Trd

Fig. 1. (a) Timing and voltage for read and write operations (b) Variation in cell resistance for SET and RESET (c) Early Read lowers the reference resistance
(Rref) at the expense of some SET cells being read as RESET (d) Turbo Read increases Vrd to lower Trd, at the expense of accidentally flipping some RESET
cells into SET state.

Our key insight is that Early Read causes only unidirectional
errors (SET classified as RESET), as shown in Figure 1(c).
To efficiently detect the errors that happen due to Early Read,
we equip each line with Berger codes [17], which can detect
all unidirectional errors in the line while incurring only 10
bits (for a cache line of 64 bytes). In the uncommon case that
Early Read results in a data error, Berger code can detect the
error, and the system retries the read with the normal latency.
We show that lowering the sensing time by 25% increases
the Bit Error Rate (BER) to 10−5 and causes probability of
retry to still be only 0.5%. Thus, Early Read obtains a low
read latency in common case and guarantees correctness in
the uncommon case of data error. Our evaluations show that
Early Read provides an average speedup of 17%.

Our second proposal, Turbo Read, targets the sensing
voltage (Vrd) as a means to improving read latency. Since
writes to PCM system are performed by supplying high
current, increasing the read voltage (and thus read current)
can cause accidental writes to some cells that are being
read, a phenomenon called as read-disturb [18, 19]. To avoid
read disturb, Vrd is set conservatively so that the episode of
accidentally flipping the cell while reading happens with a
negligibly small probability. Turbo Read increases the sensing
voltage so as to reduce the sensing time, and mitigate read
disturb faults using error-correcting codes. We show that if
the line is provisioned with double error-correcting (ECC-2)
code, it can tolerate a BER of 10−9 due to read disturb. Given
that Turbo Read provides probabilistic guarantees on system
reliability, it can also be combined with Early Read (without
the need to rely on Berger codes or a retry mechanism) as long
as the resulting scheme has an error rate that can be handled
with ECC-2. We show that Turbo Read when combined with
Early Read can reduce the read latency of PCM by 30%,
without the need for the PCM devices to support bimodal
read latency (short and normal). Our results for a baseline
8-core system with a 128 MB L4 cache shows that combining
Early Read and Turbo Read improves, on average, performance
by 21% and Energy Delay Product (EDP) by 28% with an
implementation that uses a relatively small hardware budget.

Although the ECC code provisioned with the line is effec-
tive at correcting errors due to read disturb, it does so only
when the line is accessed the next time. Unfortunately, a read
request fetches multiple lines into the PCM row buffer and not
all the lines in a row buffer get accessed. A line neighboring
to the requested line in the same row can still experience a
read disturb due to Turbo Read. If this neighboring line is not
read for a long time, then the faults due to read disturb can
accumulate over time and can exceed the correction capability
of the ECC code associated with that line. We show that such
patterns can occur in malicious code or badly written code.

To protect the memory from such silent accumulation of read-
disturb errors, we propose Probabilistic Row Scrub (PRS) that
can scrub the referenced row with a small probability. We show
that PRS is highly effective at avoiding silent accumulation of
faults under Turbo Read.

Furthermore, to handle drift, PCM systems may be de-
signed conservatively to target a much lower BER. We show
that our proposal is even more effective in such scenarios, as
the margin for drift is provisioned for worst-case cells, and our
solutions can exploit this source of cell variability as well.

II. BACKGROUND AND MOTIVATION

We describe the organization of a PCM bank, then discuss
the process of a typical read operation in memory, and how the
variation in cell characteristics affects the PCM read latency.

Bit Line
Word Line

Sub Array 0

PCM Bank

A
dd

re
ss

Sub Array 1
Global Sense Amplifiers

Bit Line Sense Amplifiers

Sub Array n

PCM CellD
ec

od
er

Fig. 2. Overview of a PCM Bank which is composed of subarrays, local and
global sense amplifiers. These amplifiers detect values in PCM Cells.

A. Overview of PCM Organization

A PCM module is composed of independent banks, as
shown in Figure 2. When a read request arrives into a PCM
module, it is routed into the appropriate PCM bank according
to its address [14]. The read circuitry precharges the bit
line and activates the word-line associated with the resistive
PCM element (Germanium-Antimony-Tellurium or GST) [20].
In a two level cell based PCM, the bit-line sense amplifier
converges into a digital value of either ‘1’ (low resistance SET
state) or ‘0’(high resistance RESET state) depending on the
value of GST resistance [13]. To reduce bit-line capacitance,
PCM banks are divided into sub-arrays that have their indepen-
dent sense amplifiers [21]. The bit line sense amplifiers convert
the analog PCM cell data into digital data and drive global
sense amplifiers for the bank. The global sense amplifiers boost
the voltage and drive the data to the I/O pads. The data is
transferred from the memory modules to the processor over a
bus-based interface such as DDR or LPDDR.

310

B. Overview of PCM Read Operation

The circuitry and conditions of basic read operation for a
cross-bar array PCM cell is chosen so as to satisfy two main
constraints - (a) the state of the cell should be read reliably
and accurately, while expending the least amount of energy,
and as quickly as possible; and (b) the process of reading the
cell should itself not alter the state of the cell. Often, these
requirements leave a very constrained space in order to design
a read circuit for a PCM cell in a large cross-bar array. We
describe the voltage based sensing, which is commonly used
in many industry prototype chips [22, 23] 2.

time

SET

RESET

Word Line Enable

Bit Line Sense Amplifier Enable

Sensing time time

LATCH

TBUST SENSET

Precharge Enable

0

PRE

0

refV

BL

V

V

DD

Fig. 3. Timing components for the read operation in a PCM system.

Sensing Time Dominates Read Latency: Figure 3 shows
the latency components of a PCM read operation. It consists
of three parts: the precharge time (TPRE), the sensing time
(Tsense), and the data transfer on the bus (TBUS). To read
data, the bit-lines are pre-charged to VBL. To read data from
a cell, the corresponding word-line is activated. Depending
on the value of GST resistance, the voltage in the bit-line
will drop. For SET state, due to lower resistance, the voltage
will drop faster than the high resistance RESET state. After
time Tsense, the PCM sense amplifiers compare the bit-line
voltage with a reference voltage (Vref). If the voltage in
the bit-line is below Vref , the bit-line sense amplifier will
provide a ‘0’, otherwise a ‘1’ [22]. To account for device
variations, drift and Vref variations, the value of Tsense is set
conservatively [15]3. To prevent read-disturb faults, VBL is set
conservatively [18, 19]. Overall, the sensing time dominates
the read latency of PCM. The time to precharge takes about
5-7ns [3], whereas the time to transfer the cache line on bus
takes 4 cycles on a DDR interface (e.g. if the bus operates at
800MHz [22], TBUS is 5ns). The sensing time, however, takes
several tens of nanoseconds, and is primarily responsible for
the high latency of PCM.

2Another sensing mode called current mode sensing can also be used
to detect the value in PCM cell. Unfortunately, current mode sensing uses
complex circuitry which tends to be intolerant to device variations and is
useful only for low density PCM devices [24]. As voltage mode sensing is
tolerant to variations, industrial prototypes of high density PCM devices which
are used for main memory systems tend to use voltage mode sensing [22, 23].

3Drift causes the resistance of PCM cells to increase over time. The sensing
time of the PCM array must be increased to compensate for the drift of the
worst-case cell in the array. Our default studies conservatively assume no
timing margins for drift. We show, in Section V-G, that our proposal becomes
even more effective when the margins for drift are taken into account

�����
�����
��-��
�����
����
����
����
����
�

��	 ��� ��
 �����
�
��
���
��
�
���
��
� ��
��
��

��
��
��
��
��

�������������� �������������

 !

��� �����

Fig. 4. PCM cells show wide distribution of resistance (derived from
cumulative distributions in [25]).

C. Not All PCM Cells Are Created Equal

For reliable differentiation between SET and RESET, there
is an order of magnitude difference between the SET resis-
tance (RSET) and RESET resistance (RRESET). However,
there is significant variation in the resistance characteristics
of different cells, for both states. And the sensing time of
the PCM devices are designed to handle the worst-case cell
behavior to avoid any sensing related data errors. Prior studies
have shown that RSET and RRESET for PCM cells tend to
follow a log normal distribution [13, 25]. Figure 4 shows
the probability of resistance for a PCM cell in SET and
RESET states, based on the PCM characterization data [25].
RSET varies from 1KΩ to 10KΩ, following a distribu-
tion (lnN[5KΩ,0.0365KΩ]). Whereas, RRESET varies from
100KΩ and can have values as high as 2MΩ following a
distribution (lnN[800KΩ,0.0995KΩ]).

D. Goal: Better-Than-Worst-Case Read Latency

The sensing time primarily gets determined by the worst-
case cell in the SET region (cell A in Figure 4). The sensing
voltage gets determined by the most vulnerability cell in
RESET state (cell B in Figure 4) to avoid read disturb failures.
Rather than making every PCM read operation incur a high
latency, just to handle the worst-case cell, we instead want an
architecture that can provide low read latency in typical cases
and can handle the occasional data errors that may happen
with such a design. This paper investigates two Better-Than-
Worst-Case (BTWC) [26] designs for read operations in PCM.
The first targets the sensing time directly, the second targets
sensing voltage as a means to reduce the sensing time. We
discuss our methodology before describing our proposals.

III. EXPERIMENTAL METHODOLOGY

A. Configuration

We use a detailed memory system simulator for our studies.
Table I describes the parameters used in the baseline system.
Our baseline has an 8-core processor chip, and that is equipped
with a large external L4 cache to implement a hybrid memory
system. The L4 cache is 128MB in size, and the cache capacity
is partitioned equally between all the cores. The linesize of all
cache units is 64 bytes. The main memory system is made of
PCM and consists of four channels.

Write requests arrive at the PCM memory only on eviction
from the L4 cache. Both read and write requests are at the
granularity of cache line, and are serviced by one of the PCM
banks, based on the address of the line. Each bank has a

311

separate 8-entry read queue (RDQ) and 32-entry write queue
(WRQ) that queues all pending requests. The memory system
employs a read priority scheduling. We incorporate Adaptive
Write Cancellation (AWC) [9] to tolerate the high write latency
of PCM. The read latency is assumed to be 80 ns, majority of
which (69ns) is consumed by the sensing time [22].

TABLE I. BASELINE CONFIGURATION

Processors

Number of cores 8 cores, each 4-wide 3GHz

L1/L2/L3 (private) 32KB/256KB/1MB (8-way each)

L4 Cache

Size 128MB (16MB per core)

Latency 15ns (45 cycles)

Phase Change Memory

Capacity/Channels 4 channels, each with 8GB DIMM = 32 GB total

Ranks/Banks 1 rank per channel, 8 banks per rank

Read Queue 8-entry/bank (256 total) [9]

Write Queue 32-entry/bank (1024 total) [9]

Read Latency 80 ns (6ns tPRE + 69ns tSENSE + 5ns tBUS) [22]

Write Latency 250ns [22]

Bus (per Channel) LPDDR, 64-bit (+8-bit for ECC), 800MHz [22]

Scheduling Read Priority, Adaptive Write Cancellation [9]

B. Workloads

We use a representative slice of 1 billion instructions
for each benchmark from the SPEC2006 suite. We perform
evaluations by executing the benchmark in rate mode, where all
the eight cores execute the same benchmark. Given our study
is about memory system, workloads that spend a negligible
amount of time in memory are not meaningful. So, we perform
detailed study only on the 14 benchmarks that have an L4
misses Per Thousand Instructions (MPKI) of at least 1. Table II
shows, for our workloads, the read (MPKI) and the Write Back
per Thousand Instructions (WBPKI), both out of the L4 cache.
We use an suffix “ r” with the benchmark to indicate rate
mode. We also use three multiprogrammed workloads: mix H
(8 high intensity workloads, mcf to GemsFDTD), mix M (8
medium intensity workloads, soplex to zeusmp) and mix L (8
low intensity workloads, omnetpp to xalancbmk). We perform
timing simulation till all the benchmarks in the workload finish
execution and measure Weighted Speedup (WS). We report
normalized performance (Speedup) as the ratio of WS of the
given configuration to the WS of the baseline.

TABLE II. WORKLOAD CHARACTERISTICS.

Workload L4 Read Miss L4 WriteBack
(MPKI) (WBPKI)

mcf r 36.9 6.1

libquantum r 25.4 2.7

milc r 24.1 9.4

soplex r 23.5 3.4

bwaves r 17.2 1.4

lbm r 16.0 7.8

omnetpp r 9.5 3.3

GemsFDTD r 8.4 4.6

gcc r 5.3 0.7

leslie3d r 5.1 2.0

zeusmp r 4.0 1.5

wrf r 3.2 1.2

cactusADM r 3.1 0.4

xalancbmk r 1.1 0.6

mix H (top 8) 20.1 4.83

mix M (mid 8) 11.1 3.08

mix L (bottom 8) 4.96 1.78

IV. EARLY READ

Early Read exploits the variability in the resistance of cells
(particularly in SET state) and reduces the sensing time by
tuning the sensing circuitry for a cell that has a resistance level
well below the highest resistance cell in the SET region. The
reduced target resistance decreases the Resistance-Capacitance
(RC) time constant for the discharging circuit and reduces
the sensing time. This section explains how the variability of
PCM cells can be used to determine a reduced sensing time,
the architecture support to enable Early Read, and evaluations
showing the effectiveness of Early Read in reducing the PCM
read latency and the system execution time.

A. Exploiting Cell Variability

The basic idea behind Early Read is to enable sense
amplifier to latch the data early thereby reducing the sensing
time (Tsense), at the expense of causing a few cells in the
SET state to be classified as RESET. The tuning of the sensing
circuitry with Early Read can be envisioned as a reduction in
the value from sensing resistance Rsense to a lower value, say
Rsense ER. By reducing the value of Rsense to Rsense ER, a
few cells in the SET have a small probability to be higher than
Rsense ER and get classified as RESET. Figure 5 shows the
effect reducing Rsense on cells in the SET state based on the
data obtained from characterization of PCM devices [25]. The
value of Rsense reduces from 10KΩ (point A) to Rsense ER of
7KΩ (point A∗) and all cells between points A∗ and A become
vulnerable to be incorrectly read as RESET, causing data error.

�����
�����
��-��
�����
����
����
����
����
�

��	 ��� ��
 �����
�
��
���
��
�
���
��
� ��
��
��

��
��
��
��
��

����������������������������

 !

��� �����

!"
���������#���������

!�$�����������%��
!"�$�������&'���(%��

Fig. 5. Early Read reduces the sensing resistance Rsense from worst-case
cell in SET region (cell A) to a better-than-worst-case cell (cell A*).

�����
�����
�����
�����
����
����
����
����

���� ���� ���� ���� �����

�
�

	

��

�����

�

Fig. 6. BER increases exponentially from 10−16 to 10−5 when Rsense is
reduces from 10KΩ to 7KΩ.

Figure 6 shows the expected Bit Error Rate (BER) with
Early Read as the value of the sensing resistance Rsense is
changed. This data is derived from Figure 5, and helps us
determine the operating Rsense for Early Read to get the
desired latency reduction at the expense of tolerable BER. For

312

example, for the baseline system Rsense is 10KΩ, which means
it has negligibly low probability of error. For Early Read, we
can select a Rsenseof 7KΩ, resulting in a BER of 10−5. At
this BER, we expect one error every 200 read operations.

For a system with Early Read, there must be a provision to
tolerate occasional errors. One option is to simply provision the
system with Error Correction Codes (ECC) to fix the errors that
happen due to Early Read. However, to retain the effectiveness
of Early Read, the system needs to be able to tolerate a larger
BER (in the regime of several parts per million), and this
requires strong ECC code (that can correct almost 6 or more
bits per line). Not only are such strong ECC codes expensive
in terms of storage but also requires significant latency and
complexity. Alternatively, we could go for weaker ECC codes
(such as SECDED or DECTED), but those codes can only
tolerate a low BER rate (approximately 10−9), making the
operation point of the Early Read scheme more conservative
and thus less effective. Ideally, we would like to detect any
number of errors in the data block, while consuming very little
storage overhead and latency.

A key insight that makes our proposed implementation of
Early Read reliable and practical is the observation that (a)
Latching the output of the sense amplifier early does not affect
the state of the PCM cells and (b) Such early latching results
in only unidirectional errors (SET read as RESET). We can
use a particular type of code, called Berger Code [17] that
can efficiently detect all unidirectional errors in a data block
while consuming very little storage overhead and complexity.
We describe the operation of Berger Codes next.

B. Berger Codes for Error Detection

Berger code is a type of unidirectional error detection code.
The check bits of Berger codes are computed by summing all
the ones and storing that inverted sum in the check bits. The
Berger codes use K check bits for D data bits. The value of K
and D follow the relation described by equation (1) [27].

K = log
2
(D + 1) (1)

Let us assume our two level PCM system classifies SET
as logic 1 and RESET as logic 0. Therefore, errors due to
Early Read can result in a logical 1 being read as a logical 0.
So, to detect such unidirectional errors going from 1 to 0, the
check bits of the Berger code can be obtained by counting the
number of 1s in the data line and inverting the sum. For a cache
line, D is 512b (64Bytes) and the value of K is only 10 bits.
When the cache line is written to memory, the check bits are
computed by adding all the 1s in the data bits. The computed
value is of the sum is inverted, and this value is stored along
with the data. When reading from memory, the number of 1s
in the data bits is recomputed and its value is compared with
the inverted value of check bits. A mismatch signifies that one
(or more) unidirectional errors. Figure 7 shows the encoding
and detection of Berger code.

Berger Code can detect any number of unidirectional errors
that happen either in the data block or the check bits or both.
Let us consider the three cases. First, the errors only happen
in the data block. Then, the number of ones computed from
the data block will be less than the ones reported by the check
bits. Second, lets consider that the error only happens in check
bits. Then the number of ones in the data block will be lower

DATA

Count 1s

invert

No Match = ERROR

(a)

(b)

DATA

Count 1s

CHECK BITS

CHECK BITS

Fig. 7. Berger codes: (a) Encoding the check bits (b) Error Detection.

than the number of ones reported by the check bits. Third,
if error happens both in the data block and the check bits,
then the sum of ones in the data block can only go down,
whereas the sum of the ones reported by the check bits can
only go up (as we store the inverted value of sum, the inverted
sum only goes down, which means the actual value of stored
checked sum can only go up). Thus, unidirectional errors are
guaranteed to get detected with Berger codes4.

The storage complexity of Berger code is simply 10 bits
per cache line. We assume that each line is equipped with extra
bits to store the check bits for Berger code. Note that, PCM
memories are likely to be provisioned with error tolerance
capability, such as Error Correcting Pointers (ECP) [6] to
tolerate endurance related faults anyway. Prior proposals have
considered an architecture similar to SECDED DIMM for
PCM, whereby the extra 64 bits per 64 byte line are used
to correct up-to 6 endurance related faults using ECP-6. We
can potentially use the storage for one of the ECP entries for
storing Berger code and still have space left for implementing
ECP-5. Our analysis will assume a DIMM structure similar to
SECDED DIMM, whereby each access for a line of 64 byte
also brings in additional meta-data of 8 bytes.5

C. Error Correction with Detection and Retry

If an error is detected, we simply rely on a fallback
mechanism of reading with a higher latency (normal latency)
to correct errors, as shown in Figure 8. Thus, the PCM memory
system must have support for two read latencies: First, a
shortened latency as afforded by Early Read and Second, the
normal latency. If the first try with shorter latency fails, then
we try the read request again with normal latency. This allows
Early Read to provide low latency in common case, and still
provides correct results in the uncommon case of data error.

Read with Check

Read with
Normal Latency

Berger Code

ERROR
Data

Low Latency Data

Fig. 8. Error correction by retrying reading data with a longer latency.

4While Berger Codes guarantee detection of all unidirectional errors,
they can also always detect single bidirectional errors. To detect multiple
bidirectional errors from faulty cells being overlapped with unidirectional
sensing errors, one may use error detection codes such as CRC [28, 29].

5The logic for implementing Berger code incurs negligible area and latency.
Given a bus size of 72 bits, we count the number of 1s in each bus transfer
(72 bits) and accumulate it for all the transfers for a given line. Counting
the number of 1s in a 72-bit word incurs an area overhead of few hundred
logic gates and a delay of less than 25FO4 (less than 2 cycles on a 3GHz
processor). We include this latency in our calculations.

313

D. Model for Selecting the Target Read Latency

We can tailor the sensing time of Early Read by tuning
the read circuitry for appropriate sense resistance. Lower
sense resistance would give lower sensing time but higher
probability of retry. Whereas, higher sense resistance would
give comparatively higher sensing but at a reduced probability
of retry. We want to select an operating point for Early Read
that balances both these effects, to give an overall reduction
in read latency. We develop a model to converge on the best
operating point for Early Read.

Let TRead be the total reading time for the baseline. Let
TRead ER be the reading time for Early Read. Let r is the prob-
ability that a read request may flag unidirectional errors and
result in a retry. The effective read latency (TRead ER−Eff)
can be computed as shown in Equation 2.

TRead ER−Eff = (1−r) ·TRead ER+r · (TRead ER+TRead) (2)

�

���

���

���

���

���

��	

��

���

� �� �� �� �� �� 	�
�

�
�
���
��
��
�
�� �
��
��
��

�����������������

���

�

��

���� 	!������"#$ ����

$���"#$� �
%&

$���� ���%&

�)

���

�����

����������

Fig. 9. Targeting a lower SET resistance (from 10KΩ to 7KΩ) reduces
sensing time from 69ns to 48ns (while maintaining the same voltage margin
of 150mV from either curves).

1) Effects on Sensing Time: We first discuss how the
point of operation affects the sensing time of early read.
Figure 9 shows the cell voltage for the baseline tuned to a
SET resistance of 10KΩ and RESET resistance of 100KΩ. The
sensing time is the time at which there is sufficient difference
in voltage for the two states. We keep a margin of 150mV to
account for variation in reference voltage in either direction.
So, the baseline system will have a Tsense of 69ns.

Now, instead of the SET cell of 10KΩ, if we use a SET
cell of 7KΩ then the cell discharges faster, as shown by the
line corresponding to A*. Now, for the same voltage difference
of 300mv we will be expected to wait only for 48ns. Similar
analysis can be performed for other points of operation for the
selected value of the target SET resistance.

2) Effects on Retry Probability: The overall read latency
must be balanced for a point where the gains from reducing
the sensing time does not get exhausted by the higher latency
incurred due to retry. Table III shows the probability of retry
and the effective read latency per Equation 2 We see that
Rsense equals 7KΩ, we get a retry probability of 0.5%, and
the lowest overall read latency. Hence, we use 7KΩ as the
default value in our evaluations for Early Read.

TABLE III. EFFECTIVE READ LATENCY FOR DIFFERENT Rsense .

Rsense Tsense P(retry) Effective Trd (incl TPRE , TBUS)

10KΩ 69 ns 0.0% 80 ns

8KΩ 55 ns 0.0% 66 ns

7.5KΩ 51 ns 0.0% 62 ns

7KΩ 48 ns 0.5% 60 ns

6.5KΩ 44 ns 40% 90 ns

E. Impact of Early Read on Execution Time

Early Read reduces the read latency of PCM from 80ns
to 60ns. The 25% reduction in read latency also translates to
performance. Figure 10 shows the speedup from Early Read.
The bar labeled Gmean indicates the geometric speedup for
all the workloads. Workloads such as mcf r spends more than
80% of their execution time in memory, hence they obtain
a significant speedup (20% lower execution time with 25%
faster memory). Overall, we observe that Early Read is quite
effective, and provides an average speedup of 17%.

Sp
ee

du
p

1.05

1.10

1.15

1.20

1.25

1.30

mcf
r

lib
qu

an
tum

r
milc

r

so
ple

x r

bw
av

es
r
lbm

r

om
ne

tpp
r

Gem
sF

DTD
r
gc

c r

les
lie

3d
r

ze
us

mp r
wrf

r

ca
ctu

sA
DM

r

xa
lan

cb
mk r

mix
H

mix
M
mix

L
Gmea

n
1.00

Fig. 10. Speedup with Early Read. On average, it provides 17% speedup.

V. TURBO READ

Early Read targets the sensing time directly in order to
improve the latency of read operations. However, Early Read
relies on the memory system to support two types of read
latency (low latency and normal latency). Our second proposal,
Turbo Read, targets the sensing voltage as a means to reduce
the sensing time, without requiring a dual latency support from
the memory system. We first describe the constraints that limit
the sensing voltage, then how increasing the sensing voltage
can reduce sensing time at the expense of causing data errors.
We then provide means of tolerating data errors that happen
because of Turbo Read.

A. Read Disturb and Raising the Read Voltage

Write operations to a PCM cell are performed by electrical
heating using current pulses. The sensing voltage for a read
operation (Vrd) is kept at a level such that the probability of
accidentally writing to the cell while reading is negligibly low.
An accidental change in the state of the cell while doing a
read operation is called as read disturb. If the cell is in the
SET state, the worst-case read current flowing through any
cell is much lesser than the current necessary to create any
appreciable heating in the cell, and thus there is virtually no
chance that the cell will transition to the RESET state, even
at higher read voltages. On the other hand, if the cell is in the
RESET state, the worst-case peak current flowing through any
cell may be sufficient to cause switching to SET.

314

�

���

���

���

���

���

��	

��

���

�
�
���
��
��
�
�� �
��
��
��

� �� �� �� �� �� 	�
�
�� �����������	�
���	

���

!

�
�	��	��$���%�

��	�������	��	�$���	

��)

�����

�����

�

���

���

���

���

���

���

���

���

��
��!
��
��
"�
�� �
��
��
�	

� �� �� �� �� �� �� ��
����������	�	
	����	��

����
���	������$���%�

����	�����$��	�

���

�

�

�����

�����

�

���

���

���

���

���

��

���

��!

"
�#
#�$

�#
�

%�
�� 	

��
�#
��

� �� �� �� �� �� � ��
�
��������	�	
	���
�	��

���

#��	�����#�$�!���%�

����	�����#$��	�

���

�*

�

�����

�����

Fig. 11. Determining the sensing time of a system for (a) Baseline (Tsense) (b) Turbo Read (Tsense TR) (c) Turbo Read + Early Read (Tsense ETR).

The insight in Turbo Read is to keep a sensing voltage
higher than normal; to reduce the sensing time, but low enough
that the read disturb errors can be mitigated in a practical and
cost-effective manner. To understand the relationship between
the sensing voltage and error rate due to read disturb, we follow
the study that characterizes this data for PCM devices [18].
Their study shows that an increase in sensing voltage by 30mV
increases the likelihood of read disturb errors by 3 orders of
magnitude. We assume that for the baseline system the bit error
rate due to read disturb is 10−18 (so that the likelihood of a
flipped bit on each read of a cache line can be in the range
of 10−16). For our studies, we increase the sensing voltage
from 0.70V to 0.79V6, which would increase the read disturb
probability for a bit from 10−18 to 10−9.

B. Handling Read Disturb with ECC Code

Read disturb faults occur while performing a read operation
at a higher than specified sensing voltage. However, these
errors may not be visible immediately in the data read from
the PCM array. The corrupted bit may stay in the line, and
may become visible only on subsequent read to that line.

To mitigate the errors that happen because of read disturb,
we can equip the memory with error correction codes (ECC).
However, we want to keep the overhead of ECC to a man-
ageable level, and avoid using high strength ECC codes as
they incur significant cost and complexity. A memory system
that is provisioned to correct K errors per line will give an
uncorrectable error when the line has more than K errors. To
converge on a suitable value of K we study the probability
that the line has an uncorrectable error for different value of
Bit Error Rate (BER), as shown in Table IV.

TABLE IV. PROBABILITY THAT LINE HAS K ERRORS AT GIVEN BER

BER Prob (Line has K errors)

Read disturb k=1 k=2 k=3 k=4

10−8 5.1×10−6 1.3×10−11 2.2×10−17 2.9×10−23

10−9 5.1×10−7 1.3×10−13 2.2×10-20 2.9×10−27

10−10 5.1×10−8 1.3×10−15 2.2×10−23 2.9×10−31

For a BER of 10−9, we observe that the probability that the
line will have 3 or more errors is 10−19, which is well below
the target range we seek (10−16). Therefore, we conclude
that simply using ECC code that can correct two errors per
line (ECC-2) would be sufficient for Turbo Read. The storage
required for ECC-2 would be 20 bits per line.

6Read current is only 40μA compared to write current of 300μA and write
current impacts PCM lifetime [3]. Fortunately, Turbo Read causes only a
nominal increase in read current (45μA), negligibly impacting lifetime

Fortunately, prior work has looked at efficiently integrating
ECC codes in PCM memories. The FREE-p design [30]
used ECC-2 and ECP-4 in order to tolerate both soft errors
and hard errors in PCM memories. While they did not look
into redesigning the PCM system given the error correction
capability, in our paper we leverage the existence of ECC to
design a better-than-worst-case PCM system. For the studies
with Turbo Read, we will assume a FREE-p like architecture
that supports ECC-2 with every PCM line.7

C. Turbo Read Operation and Synergy with Early Read

To implement Turbo Read, the sensing circuit is tuned to
operate with higher VBL and Vref for all read operations.
When the line is read, an error may occur that flips the bit being
read. Such an error may not be visible during the ongoing read
operation. However, on a subsequent read operation for the
same line, the ECC code with the line will detect the error,
correct it, and rewrite the corrected value to memory (to avoid
accumulation of errors), and also provide this corrected value
as the output of the read operation. As long as the line does
not encounter more than two errors, ECC-2 will correct it.

Turbo Read and Early Read are synergistic and can be
combined. Unfortunately, errors can happen in both directions
in this system, Fortunately, the ECC-2 associated with the line
can be used for correcting errors that happen from both Early
Read as well as Turbo Read. The restriction however, is that
the BER for the two types of errors combined should not be
significantly higher than 10−9. For example, if Turbo Read
has a BER of 10−9 and we select the sensing resistance for
Early Read such that the BER for Early Read is also 10−9,
then the combined error rate for the system will be 2×10−9.
From Table IV, we can estimate that for a BER of 2×10−9,
the likelihood that the line will have 3 or more errors will be
approximately 10−18, which is still well below the target error
rate we seek (10−16 for the line). To obtain a BER of 10−9

with Early Read, the sensing resistance for Early Read must be
kept at 8.25KΩ (instead of the 7KΩ used in Section IV). For
the configuration that combines Turbo Read and Early Read,
we will use a sensing resistance of 8.25KΩ.

D. Analysis for Sensing Time

We perform analysis of the sensing time to determine the
read latency of a system with Turbo Read (with and without
Early Read). Figure 11 shows the cell voltage for the baseline
tuned to a SET resistance of 10KΩ and RESET resistance
of 100KΩ and a VBL of 0.7V. The sensing time is the time

7For BER of 10−9, less than 1 read disturb error happens per 1 million
reads. Such writes have a negligible impact on endurance (� 0.01%)

315

so
ple

x r

bw
av

es
r

lbm
r

om
ne

tpp
r

Gem
sF

DTD
r

gc
c r

les
lie

3d
r

ze
us

mp r
wrf

r

ca
ctu

sA
DM

r

xa
lan

cb
mk r

mix
H

mix
M

mix
L

Gmea
n1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

Early Read
Turbo Read
Turbo Read + Early Read

mcf
r

lib
qu

an
tum

r

milc
r

Fig. 12. Speedup with Early Read alone, Turbo Read alone, and combination of Early Read + Turbo Read. Early Read alone provides an average speedup of
17% and Turbo Read alone provides an average speedup of 9.7%. The combination of Turbo Read + Early Read provides an average speedup of 21%.

at which there is sufficient difference in voltage for the two
states. We keep a margin of 150mV from either direction to
account for variation in reference voltage. The time at which
the expected difference from both the curves is 150mV is
chosen as the time to latch the data value. Thus, the baseline
has a Tsense of 69ns. The overall read latency for the baseline,
including TPRE and TBUS will be 80ns.

For the system with Turbo Read, we increase the VBL to
0.79V and again try to find the point where the expected value
of voltage decaying from both the SET (10KΩ) and RESET
(100KΩ) are separated from the reference voltage by 150mV.
We revise the reference voltage (Vref) from 0.502V for the
baseline to 0.596 for Turbo Read. As shown in Figure 11(b),
Turbo Read provides a Tsense of 57ns. The, overall read
latency for one read operation with Turbo Read, including
TPRE and TBUS will be 68ns, 15% lower than the baseline.

To combine Turbo Read and Early Read, we change the
VBL to 0.79V and instead of using the SET cell of 10KΩ, we
use a SET cell of 8.25KΩ. A lower resistance cell allows the
voltage to decay faster, as shown by the line corresponding
to A* in Figure 11(c). For maintaining the voltage margin of
150mv we will be now need only 45ns8. The read latency for
one read operation for a system that combines both Turbo Read
with Early Read, including TPRE and TBUS will be 56ns, 30%
lower than the baseline.

E. Impact on Execution Time

Figure 12 shows the speedup from Early Read, Turbo Read,
and a combination of Early Read and Turbo Read. Note that
our proposals reduce the isolated memory latency, independent
of the workloads. For workloads that spend a significant
portion of execution time in memory, the reduction in memory
latency results in significant speedups. For example, mcf r
spends more than 80% of the execution time in memory, which
causes it to get 1.32x speedup (25% reduction in execution
time) due to 30% reduction in memory latency with Early Read
+ Turbo Read. On average, Early Read improves performance
by 17%, Turbo Read improves performance by 9.7%, and the
combination improves performance by 21%.

8In our designs, we conservatively maintain the same voltage margins
from the reference voltage as the baseline. However, given that the system
is provisioned with ECC-2 per line, a modest variation in reference voltage
can be tolerated. As it will result in a small chance of error, which can be
corrected by the ECC-2. We show that even without such optimizations, our
proposed designs can reduce read latency significantly. More gains are possible
for further optimizing for reference voltage variation as well.

F. Sensitivity to Target Bit Error Rate (BER)

We perform our studies assuming a target BER rate of
10−16. In this section, we vary the BER to evaluate the
effectiveness of our schemes across different BER. Figure 13
shows the speedup for Early Read, Turbo Read and their
combination as the target BER of the system is varied from
10−14 to 10−20. Speedup due to Early Read varies from 14%
at BER of 10−14 to 26% at BER of 10−20. This is because
at low BER such as 10−20 the value of Rref is higher which
increases the sensing time. Fortunately, the target resistance for
Early Read (BER of 10−5) is not dependent on Rref , enabling
an even higher speedup. The combination Turbo Read and
Early Read shows speedup from 16% BER of 10−14 to 29%
at BER of 10−20. Turbo Read consistently shows a speedup of
nearly 10% as reference voltage and target resistance vary with
BER. Thus, our schemes are even more effective and robust
for systems that are designed to target much lower BER.

1.05

1.10

1.15

1.20

1.25

1.30

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

S
p

ee
d

u
p

Target Bit-Error Rate (BER) [log scale]

Turbo Read + Early Read

Early Read

Turbo Read

Fig. 13. Speedup for different Target BER. Our schemes are even more
effective for systems targeting lower RBER.

G. Impact of Tolerating Drift

The resistances of PCM cells increase over time due to
drift. We use values from [31] which show that rate of increase
dependent on the resistance of the cell, in that lower resistance
values drift less than higher resistance values. So, drift has a
smaller impact on cells around the resistance of Early Read
than for the reference resistance of the system. To mitigate
drift, the system will need to be designed to have an even
higher Rref than what we have assumed and our solutions will
become even more effective as they can exploit these margins
too. Figure 14 shows the speedup for a system that has been
provisioned to handle a margin of 1 day, 100 days, and 5
years of drift. Turbo Read does not show benefits as reference
voltage and target resistance vary more than the baseline. The
performance of Early Read + Turbo Read increases from 21%
(without drift) to 27% (for a system designed to handle drift
of 5 years). Thus, our combined proposal becomes even more
effective when the margins for drift are considered.

316

1.25

1.30

NoDrift

Sp
ee

du
p

1 Day 100 Days 5 Years

Early Read Turbo Read + Early ReadTurbo Read

1.00

1.05

1.10

1.15

1.20

Fig. 14. Impact of drift tolerance. Turbo Read + Early Read becomes even
more effective by expoliting variability in drift.

VI. AVOIDING LATENT ERRORS IN TURBO READS

Thus far, for the reliability analysis of Turbo Read we
have assumed that once a line suffers an error due to read
disturb, a second read request for the line will be able to
detect the error and correct for it (the likelihood of a single
request causing three or more read disturb errors in a line is
negligibly small). This would be a safe assumption if for every
read operation the memory system sensed only the requested
line and no other lines. However, memory system is organized
at a row granularity, with PCM memories typically having
a row buffer of 256-512 bytes (4 to 8 cache lines) [3, 22].
When request for one line is serviced (say line X) then all
the neighboring lines of X belonging to the same row buffer
also get sensed. However, only the requested line is sent to
the memory controller, and undergoes ECC correction. All
the other unreferenced line in the row buffer may continue to
accumulate errors due to read disturb, and if these lines remain
unreferenced for a long time the number of errors could exceed
the error correction capability of the line. A later reference to
this line would result in data error. While such pathological
access patterns are not typical in general applications, they
can happen in malicious or badly written code. We discuss the
patterns that can cause latent errors with Turbo Read and a
low-cost scheme to protect the memory against such errors.

clflush(X)

clflush(Y)

access line X

for(i=0; i<N; i++){

}

access line Y (Same bank,diff row)

access all lines in Row of X and Y

Fig. 15. Code for causing latent errors in a system employing Turbo Read.

A. Code for Latent Errors within Row

For an access pattern to cause a latent error with Turbo
Read, there are two requirements. First, there is at least one
line that remains referenced for a long time in a frequently
accessed row buffer. Second, that unreferenced line gets used
eventually. Figure 15 shows a potential code segment that can
obtain this behavior (similar to the code in [32]). We assume
that lines X and Y are located in different rows of the same
memory bank. Request for line X and Y, each activate their row
buffers for exactly one line. This process is repeated a large
number of times N . Subsequently, all the lines of the row
buffer are accessed to read the (potentially) erroneous line.

Figure 16 shows the impact of this kernel on Turbo-Read at
a BER of 10−9. The line labeled NoPRS represents the baseline
with Turbo Read. At 10 million iterations of the attack kernel,

the likelihood that the silent line would get an uncorrectable
error is close to 100%. For the attack kernel, each iteration
requires approximately 100ns (two reads, one each for X and
Y). So the time to cause an error is nearly 1 second.

�����
�����
�����
�����
����
����
����
����
�

��� ��� ��� ��� ��� ��� �����
�

�	

��

 �
��

�
��
�
��
�

���������������
��������	�����	��

����
����� �!�

����� �"�!�
�������#

���#

Fig. 16. Probability that a line develops 3+ errors due to the attack kernel.
PRS reduces the likelihood of failure under attack by 106x to 108x.

B. Probabilistic Row Scrubbing

The vulnerability from latent errors can be avoided by
periodically scrubbing the memory. During a scrub each line
is read and if line has errors it undergoes an ECC based
correction and written back to memory. However, to avoid
failure with our attack kernel, the period for a memory scrub
should be under 1 second, which is prohibitively expensive.
Instead of doing scrub for the entire memory, we propose an
efficient scheme that applies the mitigation only to the rows
that get accessed frequently. We call this scheme Probabilistic
Row Scrubbing (PRS). PRS is inspired from our prior work
on Row Hammering [33]. With PRS, on every read access,
the entire row gets scrubbed with a small probability (p). For
resilience, we want p to be high, but to avoid the performance
overhead associated with scrubbing, we want p to be low. We
analyze p = 1% and p = 0.1%, so that on average a row
scrub will happen once every 100 (or thousand) read requests.
A scrub operation transfers four to eights lines (depending on
row buffer size) from memory instead of one line for regular
read operation. PRS with such a low probability of scrub has
negligible impact on performance (on average, less than 0.5%
for p = 1%, and is already incorporated in Figure 12).

C. Effectiveness of Probabilistic Row Scrubbing

Figure 16 shows the probability that the line will have three
or more errors due to read disturb as number of iterations
(N) increase, with PRS enabled (p = 1% and p = 0.1%).
At N=10M, for the baseline there is a 99% chance that the
line has 3+ errors. PRS (with p=0.1%) reduces this by six
orders of magnitude to approximately 10−6, and with p=1%
this reduces by eight orders of magnitude to approximately
10−8. The expected time for the line to fail under PRS would
be 10 days with p = 0.1% and 3 years with p = 1%. Thus,
PRS is effective at making the memory tolerant to latent errors.

It must be noted though, that in reality, the episode of
requesting the same line continuously from memory does not
happen with typical applications because of the presence of
caches (that contain space of storing tens of thousands of cache
lines). So, we expect that, on average, there would be at least
a few hundreds (if not thousands) of request between frequent
accesses to the same row. Therefore, in practice, even badly
written access patterns will be slowed down by 100x-1000x,
resulting in much higher time to failure under attack.

317

VII. IMPACT ON ENERGY AND POWER

We analyze the effectiveness of our proposed designs on
the memory system power and energy. For Early Read, the
read operations finish earlier so the read power is consumed
for a shorter period of time. For, Turbo Read increases the
sensing voltage (from 0.7V to 0.79V) so each read request con-
sumes higher power. Furthermore, systems with Turbo Read
also incur small amount of extra power for PRS. Figure 17
shows the speedup, energy in memory system (MemEnergy),
power in memory system (MemPower), and the Energy Delay
Product (EDP) of the system for our proposed designed, all
normalized to the baseline. For EDP calculations, we assume
that the memory system accounts for 25% of the total power of
the baseline, and the processor and L4 cache consumes 75%.

���
���
���

����	
�� ��������� �������� ���������

�
��

��
��
�	
���
��
��
��
� �
�

��������	�

�!����	
�!����	"��������	
��������

Fig. 17. Speedup, Memory Energy and Memory Power, and System wide
EDP for our proposed scheme.

Early Read not only provides significant speedup, it is also
energy efficient. As our schemes reduce the execution time
significantly, memory power is increased (as similar amount
of activity is now done in shorter time). Overall, Early Read
reduces the system EDP by 24.5%, Turbo Read by 14%, and
the combination of Turbo Read and Early Read by 28.5%.

VIII. RELATED WORK

To our knowledge this is the first work that exploits PCM
cell variability to improve read latency using architectural
techniques. However, there are a few studies that have looked
at exploiting variability in write characteristics to improve
write performance and endurance. Zhang et al [34] studied
the process variation in PCM memories and showed that
over-programming causes significant power overheads and en-
durance degradation. They proposed to tune the programming
(write) current to adapt to process variation. However, they
did not study any scheme to improve the read latency of PCM
memories. Similar approach to optimizing write performance
by exploiting variability has been studied for Flash technol-
ogy [35]. Similarly, Childers et. al [36] investigated techniques
to improve the write performance of MLC cell, by exploiting
the fact that not all cells require iterative programming (or
require worst-case number of write iterations). Instead of using
worst case number of write iterations for all cells, they rely on
ECC to correct bits that incur long-latency to write. However,
their scheme does not improve latency of read operations, and
neither it is applicable to SLC memories.

Single Level Cell (SLC) incurs lower latency than MLC.
Using this insight, Morphable Memory System (MMS) pro-
posed by Qureshi et. al selectively morphs MLC into SLC

depending on workload capacity and reduces the overall la-
tency of PCM [37]. However, MMS does not optimize the
SLC latency. In contrast, our proposal can optimize the read
latency of SLC memories as well.

Recent ideas on optimizing DRAM such as ‘Tiered-
Latency DRAM’ lower DRAM latency by reducing bit-line
capacitance using shorter bit lines dynamically [38]. We can
apply bit-line tiering to PCM to reduce bit-line capacitance as
well. Since we target the variation in cell resistance, the two
ideas can be combined to get an even lower read latency.

Several studies exploit variability in retention time of
DRAM cells to avoid doing refresh operations [39, 40, 41, 42].
We can potentially use such schemes to tolerate cells that
cause failure in Early Read and Turbo Read, assuming that
the characteristics of the such cells do not change over time.

IX. SUMMARY

Phase Change Memory (PCM) is one of the leading
candidates in emerging memory technologies. Unfortunately,
PCM has higher latency than DRAM, which degrades system
performance. In this paper, we studied architectural techniques
to improve the read latency of PCM by exploiting the inherent
variation in resistance characteristics of PCM cells. Rather than
conventional designs that try to hide variability, we contend
that PCM systems should be designed for embracing variability
and designing for better-than-worst-case scenarios. To that end,
we proposed two solutions:

1) Early Read, a design that advocates reducing sensing
latency by latching the output of the sense amplifiers
earlier than the specified time period. While this is
effective for most cases, infrequently this may cause
errors. Fortunately, such errors are unidirectional, and
we propose a combination of Berger Code and retry
mechanism to efficiently mitigate errors. Early Read
reduces the read time by 25% and provides an average
speedup of 17%.

2) Turbo Read, a design that advocates using higher
sensing voltage as a mechanism to reduce the read
sensing time. We propose mitigation techniques (ECC
and Probabilistic Row Scrubbing) for the read disturb
errors that happen due to Turbo Read. We show that
Turbo Read and Early Read can be combined. The
combined scheme reduces the read latency by 30%
and provides an average speedup of 21%.

We show that not only are these schemes effective at
reducing read latency, and improving system performance, they
also provide significant improvement in system EDP (a 28%
reduction). The proposed schemes can be implemented with
very little changes to the memory system. While we conduct
our studies for SLC PCM system, the proposed ideas can also
be applied to MLC systems and other memory technologies.

ACKNOWLEDGMENTS

We thank Hadi Esmailzadeh for his comments on the initial
version of this work. We also thank Aseem Grover, Vinson
Young, and David Roberts for their feedback. This work
was supported in part by the Center for Future Architectures
Research (C-FAR), one of the six SRC STARnet Centers,
sponsored by MARCO and DARPA, a gift from VMware, and
the Department of Science and Technology, India.

318

REFERENCES

[1] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, ser. Synthesis
Lectures on Computer Architecture. Morgan and Claypool
Publishers, 2011.

[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” in ISCA-2009.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in ISCA-2009.

[4] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali, “Enhancing lifetime and security
of pcm-based main memory with start-gap wear leveling,” in
MICRO-2009.

[5] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh:
Prevent malicious wear-out and increase durability for phase-
change memory with dynamically randomized address map-
ping,” in ISCA-2010.

[6] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP,
not ECC, for hard failures in resistive memories,” in ISCA-2010.

[7] N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers, and H.-H. Lee,
“Safer: Stuck-at-fault error recovery for memories,” in MICRO-
2010.

[8] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error cor-
rection for phase change memories,” in MICRO-2011.

[9] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Im-
proving read performance of phase change memories via write
cancellation and write pausing,” in HPCA-2010.

[10] M. Qureshi, M. Franceschini, A. Jagmohan, and L. Lastras,
“Preset: Improving performance of phase change memories by
exploiting asymmetry in write times,” in ISCA-2012.

[11] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger,
“Preventing pcm banks from seizing too much power,” in
MICRO-2011.

[12] L. Jiang, Y. Zhang, B. Childers, and J. Yang, “Fpb: Fine-grained
power budgeting to improve write throughput of multi-level cell
phase change memory,” in MICRO-2012.

[13] H. Li and Y. Chen, Nonvolatile Memory Design: Magnetic,
Resistive, and Phase Change. Taylor & Francis, 2011.

[14] S. Hanzawa et al., “A 512kb embedded phase change memory
with 416kb/s write throughput at 100μA cell write current,” in
Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of
Technical Papers. IEEE International, Feb.

[15] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and
speed optimization of a latch-type voltage sense amplifier,”
Solid-State Circuits, IEEE Journal of, vol. 39, no. 7, pp. 1148–
1158, July 2004.

[16] Understanding The New Bit Error Rate DRAM Timing Specifi-
cations, JEDEC: Agilent Technologies, Server Memory Forum
2011.

[17] J. Berger, “A note on error detection codes for asymmetric
channels,” Information and Control, vol. 4, no. 1, pp. 68 – 73,
1961.

[18] S. Lavizzari, D. Ielmini, D. Sharma, and A. Lacaita, “Transient
effects of delay, switching and recovery in phase change mem-
ory (pcm) devices,” in Electron Devices Meeting, 2008. IEDM
2008. IEEE International.

[19] S. Lavizzari, D. Sharma, and D. Ielmini, “Threshold-switching
delay controlled by 1/f current fluctuations in phase-change
memory devices,” Electron Devices, IEEE Transactions on,
vol. 57, no. 5, pp. 1047–1054, May 2010.

[20] A. Faraclas, N. Williams, A. Gokirmak, and H. Silva, “Modeling
of set and reset operations of phase-change memory cells,”
Electron Device Letters, IEEE, vol. 32, no. 12, pp. 1737–1739,
Dec 2011.

[21] J. Yue and Y. Zhu, “Exploiting subarrays inside a bank to
improve phase change memory performance,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE)-2013.

[22] Y. Choi et al., “A 20nm 1.8v 8gb pram with 40mb/s program
bandwidth,” in Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC), 2012 IEEE International.

[23] G. Close et al., “A 256-mcell phase-change memory chip
operating at 2+ bit/cell,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 60, no. 6, pp. 1521–1533, June 2013.

[24] G. De Sandre et al., “A 4 mb lv mos-selected embedded phase
change memory in 90 nm standard cmos technology,” Solid-
State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 52–63, Jan
2011.

[25] D. Mantegazza, D. Ielmini, A. Pirovano, A. Lacaita, E. Varesi,
F. Pellizzer, and R. Bez, “Explanation of programming distri-
butions in phase-change memory arrays based on crystallization
time statistics,” Solid-State Electronics, vol. 52, no. 4, pp. 584
– 590, 2008, special Issue: Papers Selected from ULIS 2007 -
Papers Selected from the ICMTD 2007.

[26] T. Austin and V. Bertacco, “Deployment of better than worst-
case design: solutions and needs,” in Computer Design: VLSI
in Computers and Processors, 2005. ICCD 2005. Proceedings.
2005 IEEE International Conference on, pp. 550–555.

[27] G. M. Koob and C. Lau, Foundations of Dependable Computing:
System Implementation.

[28] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel:
Efficiently protecting stacked memory from large granularity
failures,” in MICRO-2014.

[29] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient
die-stacked dram caches,” in ISCA-2013.

[30] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan,
N. Jouppi, and M. Erez, “Free-p: Protecting non-volatile mem-
ory against both hard and soft errors,” in HPCA-2011.

[31] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasub-
ramonian, and V. Srinivasan, “Efficient scrub mechanisms for
error-prone emerging memories,” in HPCA-2012.

[32] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilk-
erson, K. Lai, and O. Mutlu, “Flipping bits in memory without
accessing them: An experimental study of dram disturbance
errors,” in ISCA-2014.

[33] D. Kim, P. Nair, and M. Qureshi, “Architectural support for
mitigating row hammering in dram memories,” in Computer
Architecture Letters, 2015.

[34] W. Zhang and T. Li, “Characterizing and mitigating the impact
of process variations on phase change based memory systems,”
in MICRO-2009.

[35] C. Race, Y. P. Kim, and R. Bowman, “Controlling program
parameters to increase nand flash life for ssd applications,” in
NVMW, 2014.

[36] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers, “Improv-
ing write operations in mlc phase change memory,” in HPCA-
2012.

[37] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and
J. P. Karidis, “Morphable memory system: A robust architecture
for exploiting multi-level phase change memories,” in ISCA-
2010.

[38] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and
O. Mutlu, “Tiered-latency dram: A low latency and low cost
dram architecture,” in HPCA-2013.

[39] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware
placement in dram (rapid): software methods for quasi-non-
volatile dram,” in HPCA-2006.

[40] J. Kim and M. Papaefthymiou, “Block-based multi-period re-
fresh for energy efficient dynamic memory,” in ASIC/SOC Con-
ference, 2001. Proceedings. 14th Annual IEEE International,
2001.

[41] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-
aware intelligent dram refresh,” in ISCA-2012.

[42] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: Archi-
tectural framework for assisting dram scaling by tolerating high
error rates,” in ISCA-2013.

319

