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ABSTRACT
Encryption ransomware is a malicious software that stealthily en-
crypts user files and demands a ransom to provide access to these
files. Several prior studies have developed systems to detect ran-
somware by monitoring the activities that typically occur during a
ransomware attack. Unfortunately, by the time the ransomware is
detected, some files already undergo encryption and the user is still
required to pay a ransom to access those files. Furthermore, ran-
somware variants can obtain kernel privilege, which allows them
to terminate software-based defense systems, such as anti-virus.
While periodic backups have been explored as a means to mitigate
ransomware, such backups incur storage overheads and are still
vulnerable as ransomware can obtain kernel privilege to stop or de-
stroy backups. Ideally, we would like to defend against ransomware
without relying on software-based solutions and without incurring
the storage overheads of backups.

To that end, this paper proposes FlashGuard, a ransomware-
tolerant Solid State Drive (SSD) which has a firmware-level recov-
ery system that allows quick and effective recovery from encryp-
tion ransomware without relying on explicit backups. FlashGuard
leverages the observation that the existing SSD already performs
out-of-place writes in order to mitigate the long erase latency of
flash memories. Therefore, when a page is updated or deleted, the
older copy of that page is anyway present in the SSD. FlashGuard
slightly modifies the garbage collection mechanism of the SSD to
retain the copies of the data encrypted by ransomware and ensure
effective data recovery. Our experiments with 1,447 manually la-
beled ransomware samples show that FlashGuard can efficiently
restore files encrypted by ransomware. In addition, we demonstrate
that FlashGuard has a negligible impact on the performance and
lifetime of the SSD.
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1 INTRODUCTION
Recently, criminals are unleashing brash attacks on users’ machines
through a new type of malicious software called encryption ran-
somware [34, 36, 53]. For example, the WannaCry ransomware [53]
launched on May 12, 2017 (one week before the CCS submission
deadline) has infected more than 230,000 computers across 150
countries. Among the victims are government agencies, schools,
hospitals, and police departments.

Different from traditional malware which typically disrupts com-
puter operations and gathers sensitive information, encryption
ransomware stealthily encrypts the files on user’s machine and
demands users pay a ransom to restore the files. Since the opera-
tions performed by ransomware are indistinguishable from benign
software, ransomware can easily bypass various antivirus, making
it increasingly prevalent in cyber criminals [30, 46]. According to a
study from IBM Security [17], the number of users who came across
encryption ransomware in 2016 increased by more than 6,000% over
the previous year. The ransomware attacks cost their victims about
a billion dollars in 2016 which is a 41x increase compared to the
cost in all of 2015 [13].

To counteract ransomware, researchers have proposed several
detection systems that use file access patterns [19, 44] or features
of cryptographic algorithms [9] to identify ransomware. However,
these detection mechanisms still cannot prevent ransomware from
locking up user data. First, existing ransomware detection occurs
only after observing the actual damage. Given that the encrypted
data may contain the files considered to be valuable, victims still
have to shoulder the burden of paying the ransom. Second, some
ransomware can run with administrator privileges, which allow
them to load kernel code and carry out kernel-level attacks. Given
that the existing defense systems typically run within the kernel,
ransomware can easily disable or work around the aforementioned
detection mechanisms.
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To address these issues, one instinctive solution would be to en-
able file backup on local persistent storage (e.g., journaling and log-
structured file systems [32, 40]) or remote machines (e.g., NFS [31]
and cloud-based storage [12, 51]). However, this is insufficient at
guarding against ransomware. First, any file backup mechanisms
inevitably impose storage overhead. Second, ransomware may find
and jump to the backup and encrypt it regardless of whether it is
on shared network drives, local hard disk drives, external storage
devices, or plugged-in USB sticks [55]. Third, ransomware with the
kernel privilege can also terminate backup processes, making them
futile against ransomware defense.

As the replacement to conventional persistent storage devices –
hard disk drives (HDDs), Solid-State Drives (SSDs) have beenwidely
used on many kinds of computing platforms, because they provide
orders of magnitude better performance than HDDs while their
cost is fast approaching to that of HDDs [14, 16, 47, 54]. A unique
property of SSDs is that a physical page cannot be written until it
is erased, however the erase operation incurs significantly longer
latency. To overcome such a shortcoming, modern SSD performs
out-of-place write for every write. Therefore, SSDs intrinsically sup-
port the logging functionality without requiring an explicit backup.
Such a feature will naturally preserve the old copies of overwritten
or deleted files for a period of time before they are reclaimed by
the process of garbage collection. Moreover, the firmware-level log-
ging could isolate the data protection and recovery from operating
system (OS) kernels and upper-layer software.

Unlike existing ransomware detection systems [44, 45] and ex-
plicit file backups [33, 41], we take advantage of the intrinsic flash
properties and build a ransomware-tolerant SSD named FlashGuard,
which has a lightweight hardware-assisted data recovery system. It
allows users to reinstate the data held in captivity by ransomware.

While the proposed system is based on the out-of-place write
characteristic of an SSD, it is challenging to leverage such a fea-
ture for data recovery for two major reasons. First, once data is
deleted or overwritten but gets left behind on the drive, SSD con-
troller may perform garbage collection (GC) to erase the blocks
taken up by such stale data for free space. Given that stale data
may contain the original data copies “deleted” or “overwritten” by
ransomware, FlashGuard needs to hold stale data and prevent GC
from discarding them. Since holding too much stale data could
increase the GC overhead, which further affects the performance
of regular storage operations significantly [3] and even jeopardizes
the SSD lifetime [1], an efficient GCmechanism is desirable. Second,
we must guarantee that the change to the GC is resistant to the
potential attacks against SSDs from the ransomware running with
the kernel or administrator privilege.

To tackle these challenges, we implemented FlashGuard’s data
recovery system in SSD firmware by augmenting GC mechanism
with the ability to only hold the data potentially deleted or over-
written by ransomware. We prototyped FlashGuard on a 1 TB pro-
grammable SSD with minimal modifications to the exiting SSD
design. Using a real world set of 1,477 distinct ransomware samples
covering 13 families, we show FlashGuard can quickly recover the
files held by ransomware. For example, we demonstrate FlashGuard
can restore 4 GB of encrypted data in 30 seconds. Using a set of pub-
licly available storage traces, we extensively evaluated the impact

of FlashGuard upon the storage performance. Our experimental re-
sults show that FlashGuard incurs negligible performance overhead
(up to 6%) and has trivial impact (less than 4%) on SSD lifetime.

To the best of our knowledge, FlashGuard is the first defense
scheme that can efficiently offset the damage of ransomware to
user data even if ransomware run with administrator privileges
to load kernel code or exploits a kernel vulnerability. Overall, this
paper makes the following contributions:
• We conduct a study of more than a thousand ransomware sam-
ples and find meaningful insights on their characteristics of the
encryption time and backup spoliation behavior.
• We propose a ransomware-tolerant SSD, FlashGuard, which has a
firmware-level recovery system to defend against encryption ran-
somware by leveraging the inherent out-of-place write property
in existing SSDs.
• We design and implement FlashGuard in a real programmable
SSD and demonstrate that FlashGuard can rapidly restore en-
crypted data with a large set of ransomware samples.
• We perform extensive evaluations with acknowledged storage
traces collected from different real-world applications and show
that FlashGuard has negligible negative impact on storage per-
formance and SSD lifetime.
The rest of this paper is organized as follows. § 2 characterizes en-

cryption ransomware. § 3 discusses the threat model. We introduce
the background in § 4. § 5 presents the design and implementa-
tion of FlashGuard, followed by its evaluation in § 6. § 7 discusses
the possible attacks against FlashGuard and their solutions. § 8
summarizes the related work. We conclude our work in § 9.

2 RANSOMWARE STUDY
Among various strains of ransomware, encryption ransomware
is the most common type that encrypts user data and demands
money in exchange for decrypting them. The objective of this
work is to design and develop a ransomware-tolerant SSD which
has the data-recovery capability to offset the damage to user data
resulting from encryption ransomware. To achieve this, we first
analyze the behaviors of encryption ransomware and understand
how they interact with user data by conducting a study on a large
number of ransomware samples. Different from prior studies on ran-
somware [19, 20, 44], our study focuses on two aspects – encryption
time and backup spoliation.

2.1 Study Methodology
We gathered 1,477 encryption ransomware samples from VirusTo-
tal [52] and classified them into 13 distinct ransomware families
based on the ransom notes they present to victims. Table 1 illus-
trates these families, their encryption strategies and the number of
samples in each ransomware family.

Following the common scientific guidelines [10], we executed
each ransomware sample within a virtual machine (VM) running
64-bit Windows 7 SP1 with 2 CPU cores and 4 GB main memory on
a host machine (configured with 2.67 GHz Intel quad-core Xeon pro-
cessor and 8 GB DRAM). We removed the barriers of ransomware

1we do not deem Petya ransomware that it deletes backups because Petya demolishes
and replaces Windows file system.
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Table 1:Ransomware families, their encryption time, and be-
haviors of deleting backup files (backup spoliation).

Family Samples Encryption Backup
Num % Target T (mins) spoliation

Petya1 14 0.95 MFT 2 ✮

CTB-Locker 119 8.05 Files 14 ✗

JigSaw 5 0.34 Files 16 ✗

Mobef 7 0.47 Files 16 ✗

Maktub 10 0.68 Files 22 ✓

Stampado 42 2.84 Files 27 ✗

cerber 29 1.96 Files 37 ✓

Locky 344 23.29 Files 43 ✓

7ev3n 16 1.08 Files 44 ✓

TeslaCrypt 75 5.08 Files 44 ✓

HydraCrypt 13 0.88 Files 70 ✓

CryptoFortress 4 0.27 Files 75 ✓

CryptoWall 799 54.10 Files 75 ✓

Total 1477 100 – – –

execution by disabling protection services such as firewall, Mi-
crosoft security protection, and user account control. Moreover, we
granted all ransomware samples the administrator privilege. Since
ransomware might perform key-exchange with the control server
and establish those encryption keys used for locking up user data,
we enabled the access to the Internet. However, considering ran-
somware may attempt to propagate themselves, we used a filtered
host-only adapter to control their traffic and minimize their impact
upon the host. After executing each ransomware, we revert the VM
to a clean snapshot.

We conduct two experiments to measure ransomware’s encryp-
tion time and examine whether ransomware attacks backup files
(e.g., Volume Shadow Copies [42]) respectively. We describe their
experimental setups as follows:

Encryption time. We placed a set of files (9,876 files in total)
following the file-type distribution in a normal user’s computer [11]
in each VM. Table 2 shows the distribution of these files covering
more than 18 unique file types. We run each ransomware sample
and use the screenshot method described in [19] to examine their
execution time. Specifically, we detect the changes to the screen of
the virtual machine, screenshot the ransom notifications, and calcu-
late the time it took for a ransomware to encrypt files and display
a message on the screen to notify victim. To avoid false positives,
we disabled Windows notification and manually examined each
screenshotted notification.

Backup spoliation. To determine whether a ransomware also
attacks file backups such as the volume shadow copies, we created
and enclosed several volume shadow copies on VMs.We deem a ran-
somware sample targets at backups if we observe the disappearance
of these shadow copies.

2.2 Our Findings
Table 1 describes how fast ransomware encrypts data and notifies
victim with a ransom screen (the 5th column), and whether ran-
somware attacks file backups (the last column). According to our
study, ransomware typically displays ransom screen immediately
after the encryption (sometimes even before the encryption has

Table 2: File distribution in a normal user’s computer.

Type Number Size
Num % Avg (KB) Total (MB) %

pdf 2378 24.08 565.27 1312.70 30.28
html 2117 21.43 59.15 122.29 2.82
jpg 1073 10.86 335.08 351.12 8.10
doc 797 8.07 361.92 281.69 6.50
txt 788 7.98 553.89 426.23 9.83
xls 584 5.91 587.68 335.16 7.73
ppt 501 5.07 2110.94 1032.80 23.82
xml 353 3.57 132.59 45.71 1.10
gif 349 3.53 81.64 27.83 0.64
ps 208 2.11 764.85 155.36 3.58
csv 188 1.90 202.77 37.23 0.86
gz 128 1.30 628.64 78.58 1.81
log 99 1.00 170.80 16.51 3.81
unk 59 0.60 358.53 20.66 4.77
eps 40 0.41 516.59 20.18 4.66
png 39 0.39 312.85 11.92 2.75
others 141 1.77 343.62 58.72 1.35
Total 9876 100 449.44 4334.67 100

been completed). The notification procedure takes little time and
most of the execution time of encryption ransomware is spent on
the encryption part.

We observed that ten families complete the file encryption in
less than an hour. For ransomware CTB-Locker, JigSaw, Mobef and
Petya, their encryption takes even less than 20 minutes. Moreover,
we discovered that some ransomware encrypt only small files or
files with certain extensions. For example, JigSaw encrypts only
files smaller than 10 MB, CTB-Locker only locks up files with cer-
tain extensions and Petya only encrypts a system’s Master File
Table (MFT) [27].

Observation 1: Ransomware typically locks up data rapidly
and the size of the data encrypted is relatively small.
Implication: Ransomware would like to minimize the
chances of being terminated and caught, or ransomware au-
thors may want to collect ransom quickly.

Table 1 also shows that eight ransomware families attempt to
delete backup files. Recall that we assigned ransomware samples
the administrator privilege, which grants the ransomware the per-
mission to destroy backups. We observed that some ransomware
families attempt to bypass User Access Control if the privilege
of deleting the backup files is not given. For instance, cerber [4]
firstly escalates its privilege and then deletes Shadow Copies using
the WMIC utility [56].

Observation 2: Ransomware variants proactively try to re-
move any means that victims could have to recover from the
attack without paying the ransom.
Implication: Ransomware can obtain kernel privilege to ter-
minate or destroy software-based defense systems such as
explicit data backups.
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Figure 1: The system architecture of using an SSD. The main
idea of FlashGuard is proposed and implemented in the
Flash Translation Layer (FTL) in SSD firmware.

3 THREAT MODEL
As this work focuses on defending against encryption ransomware,
we exclude the damage caused by non-encryption ransomware
because they typically lock a computer system in a way which
is not difficult for a knowledgeable person to reverse. For exam-
ple, the ransomware Trojan WinLock trivially restricts access to
the computer system and asks users to pay ransom to receive a
code for unlocking their machines. In addition, we assume that
encryption ransomware must be capable of restoring user data be-
cause inaccessibility and non-recoverability after paying ransom
can significantly influence the rewards of ransomware attacks.

In this work, we only consider the situation where data on persis-
tent storage are overwritten or deleted by ransomware. The targets
not only include the files created by user-level applications (e.g.,
.docx and .zip) but also the metadata files that are required for
file systems (e.g., Master File Table).

As discussed in § 2, some ransomware (e.g., cerber) will try to
elevate its privileges to run as administrator. Once the privilege is
given, the ransomware can disable or terminate any kernel-level
defense mechanisms. As such, we do not assume the OS is trustwor-
thy. Rather, we trust the SSD firmware. We believe this is a realistic
assumption because (1) firmware is located within a storage con-
troller, making it hardware-isolated to ransomware processes; (2)
in comparison with the OS kernel, firmware has a small Trusted
Computing Base (TCB) typically less vulnerable to malware attacks.

Overall, we believe this is a realistic threat model. First, it con-
siders all types of ransomware attacks that aim to encrypt user
data. Second, this threat model covers the cases in which the OS
kernel is compromised such as WannaCry [53]. With the advance
in ransomware defense, we believe ransomware authors will also
actively exploit the vulnerabilities in the OS kernel. To the best of
knowledge, this is the first work that explores malware defense
solutions at the firmware level.

4 APPROACH OVERVIEW
In this section, we briefly describe the technical background on
SSDs and then discuss how the intrinsic properties of SSDs can
be leveraged for building a lightweight data recovery system to
protect against encryption ransomware.

A B

write B to logical block x

A BA

(a) Overwrite on HDD (b) Overwrite on SSD

logical block physical block

x

y

x

y

write B to logical block x

x

y

x

y z

Figure 2: The fundamental difference between HDD and SSD
for an overwrite operation. When a logical block x is over-
written, HDD will update the mapped physical block y with
the new data B, while SSDwill place the new data B on a free
block z and garbage collect the block y later.

4.1 Technical Background in SSDs
Same as conventional HDDs, a commodity SSD employs a block
interface to encapsulate the idiosyncrasies of flash devices (see
Figure 1). As such, it gives upper-level software systems (such as
file systems) an impression that both SSD and HDD perform storage
operations in the same manner. At the hardware level, however,
an SSD is fundamentally different from HDD which physically
overwrites data on disks when a logical overwrite occurs (as shown
in Figure 2-a).

Given an SSD, each physical page can be written only after it is
erased. Unfortunately, erase operation can be performed only at
block (which has multiple pages) granularity and such operations
are time-consuming. Therefore, SSDs issue the writes to free pages
which have been erased in advance (i.e., out-of-place write) rather
than waiting for the expensive erase operation for every write, and
GC will be executed later to clean the stale data on SSDs. Moreover,
each flash block has limited endurance: it is rated only for a few
thousands erase operations, therefore it is important for the blocks
to age uniformly. SSDs employ both out-of-place write and GC
to overcome the shortcomings of SSDs and maintain indirections
in the Flash Translation Layer (FTL) for indexing the virtual-to-
physical address mapping.

For a logical overwrite on SSD, the data is written to a free block
which has already been erased, the old copies become invalid and
are garbage collected later (see Figure 2-b). Details about the FTL
logic will be discussed in § 5.

4.2 Rationale
To demand ransom, ransomware typically overwrites user files
with encrypted contents. As described in § 4.1, SSDs naturally hold
the old copies of the data overwritten by upper-level programs. As
such, SSDs can be devised as a recovery system that holds data
potentially manipulated by ransomware. Moreover, SSDs have an
indirection layer at the firmware level to manage data. Building a
recovery system on top of it, we can naturally isolate our recovery
system from the OS, making it resistant to the attacks typically
launched by malware to evade anti-virus. Taking advantage of the
intrinsic characteristics of SSDs, we can also minimize the code
space of our recovery system. As a result, SSDs naturally reduce
the attack surface of our recovery system.
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track whether a page has been read. Cooperating with other tables, RTT helps RFTL track the pages that could be encrypted
by ransomware. LPA: logical page address, PPA: physical page address, VPA: virtual page address, PBA: physical block address.

5 DESIGN AND IMPLEMENTATION
FlashGuard consists of two major components: a Ransomware-
aware Flash Translation Layer (RFTL) and a tool for data recovery.
The RFTL is designed for holding data potentially overwritten
by encryption ransomware. The recovery tool is for victims to
offset the damage to their files when they are aware of ransomware
infection. In this section, we present the design and implementation
of FlashGuard in details.

5.1 Ransomware-Aware FTL
The FTL in modern SSDs maintains four data structures (see 1 2
3 4 in Figure 3) to support out-of-place write and GC functional-
ities in practice. For each I/O access, the address mapping table 1
is checked to translate the logical page address (LPA) to physical
page address (PPA)2. For performance reason, the recently accessed
mapping table entries 1 are stored in a cache (using LRU policy in
RFTL) located in a small and fast SRAM. If a mapping entry is not
cached, FTL will check the Global Mapping Directory (GMD) 2 to
locate the corresponding translation page, and place the mapping
entry in the address-mapping cache.

After certain storage operations, some pages in flash blocks may
become invalid. To assist the GC operation, FTL usually uses the
Block Validity Table (BVT) 3 to track the number of the valid
pages in each block and to determine whether the block should
be garbage collected or not. Since BVT is indexed in block-level
granularity, it is small and can be fully stored in SRAM. Once a
block is selected as the GC candidate, the Page Validity Table (PVT)
4 will be accessed to check which pages are valid and should
be moved to a new flash block. The PVT could be a conventional
page validity bitmap (PVB) or a recent optimized version which
uses a log-structured merge-tree to reduce the space requirement

2The mapping table can be managed in page-level, block-level or hybrid block/page
granularity. FlashGuard uses fine-granular and fully-associative page-level mapping.
We believe it also works for other two mapping schemes.

of indexing the bitmap for each physical block [8]. In this work, we
adopt the latter design for obtaining better performance.Wewill use
examples (see § 5.2 and § 5.3) to illustrate how these data structures
work collaboratively with other components in FlashGuard.

To augment an SSD with the capability of counteracting ran-
somware attacks, a straightforward solution is to keep all the invalid
pages in the physical device until ransomware is detected. This is
infeasible for two major reasons. First, an SSD would quickly fill up
with stale data, making the SSD unusable and causing unacceptable
resource inefficiency. Second, the GC operations will be executed
much more frequently to compact and collect free blocks, which
affects the storage performance significantly.

Therefore, it is desirable that SSDs only hold the invalid pages
having the old versions of the data manipulated by encrypted ran-
somware. According to our study (§ 2) and CryptoDrop [44], the
size of the data encrypted by ransomware is typically less than a
gigabyte. Holding such a small dataset will have negligible impact
on a commodity SSD which usually has TBs of storage capacity.

However, it is challenging to track the pages manipulated by
encryption ransomware since the underlying FTL does not have
any semantic information of the received storage commands. To
overcome this, we propose the Ransomware-aware FTL to track the
invalid pages that could result from ransomware. RFTL augments
the conventional FTLs with only one additional data structure: the
Read Tracker Table (RTT) 5 , which requires minimal modifi-
cation to the existing firmware implementation.

We propose RTT based on the insights that ransomware typically
read user data from disk, encrypt it and then overwrite or delete
the original copy [19, 44]. Therefore, if a page has been read and
then become invalid later, it could be a victim page encrypted by
ransomware. We use the RTT 5 to track the page that has been
read and leverage the PVT 4 to check whether it is valid or not.
RTT and PVT provide us the hints to decide whether the page
should be reained or not.
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cal page, the previous physical page address (P-PPA)mapped
to the current LPA, the timestamp when the page is written,
the retained invalid page (RIP) bit indicating whether this
page should be retained if it becomes invalid.

The RTT organizes entries in the way of the PVT 4 , except
that each entry in the RTT is a read bitmap3 indexed by a block
address. With the same optimization used in PVT, RTT enables
RFTL to access and update the bitmap in an efficient manner. We
use a buffer (4 KB in RFTL) to cache the frequently accessed RTT
entries, which introduces only a small storage overhead in SRAM.

5.2 Read and Write Operations in RFTL
In this section, we describe how RFTL performs I/O requests in
cooperation with the data structures discussed in § 5.1.
Read operation:When a read request to page X is received, RFTL
first looks up the LPA in the cached address mapping table 1 . If
it is a cache miss, it searches the corresponding translation page in
the GMD 2 to locate the mapping entry for X in the translation
page. During this process, the RFTL also places the mapping entry
in the LRU cache for the address mapping 1 . If it is a cache hit
when accessing the cached address mapping table 1 , the read
operation will be issued directly. After locating the PPA of page X
for serving the read operation, the RFTL updates the read bitmap
in RTT 5 and sets the corresponding bit to 1 to indicate that the
corresponding physical page has been read.
Write operation:When receiving a write request, RFTL performs
the same address lookup procedure as for read in the cached ad-
dress mapping table 1 . If the mapping entry exists in the LRU
cache, the data is written to a new free page, the address mapping
entry is updated with the new PPA. Otherwise, a new mapping
entry is created. The updated or newly created mapping entries are
propagated to the translation pages and GMD 2 when they are
evicted from the cached address mapping table 1 .

To enable the reverse mapping from the physical page in SSDs
to logical page in file systems for data recovery, RFTL stores the
metadata information of a page in its out-of-band (OOB) metadata.
The commodity SSDs typically reserve 16-64 bytes OOB metadata
for each physical page. FlashGuard leverages this space to store the
metadata information about a page as shown in Figure 4.

The OOB metadata includes (1) the LPA mapped to this physical
page, (2) the previous PPA (P-PPA) mapped to the current LPA (it
is used when a page is overwritten and it enables FlashGuard to

3In FlashGuard, we use a bitmap carries 64 bits because each block contains 64 pages.

identify all the old pages mapped to the same LPA), (3) the times-
tamp when the page is written, and (4) a Retained Invalid Page
(RIP) bit to indicate whether this page is invalid and also poten-
tially manipulated by encryption ransomware. The OOB metadata
is hardware-isolated and its content is filled within flash controller,
therefore, it is naturally protected against the adversary that has
the administrator privilege. We will discuss how these metadata
can be leveraged for data recovery in § 5.4.

5.3 Garbage Collection in RFTL
Garbage collection is an essential component in SSDs to provide
free blocks for future use by compacting the used flash blocks and
also guarantee all the flash blocks age uniformly to extend SSD
lifetime. It also plays a critical role in preserving the old copies
(invalid pages) of the data manipulated by ransomware. When GC
executes, it first selects the candidate blocks, move the valid pages
in those blocks to new free blocks, and then erases these candidate
blocks for future use.
Key idea: To make an SSD capable of holding data for recovery, we
propose a new GC scheme in RFTL. In particular, RFTL examines
whether an invalid page in a GC candidate block has been read.
The GC will retain those pages. The invalid pages that have never
been read will be discarded/erased. The intuition behind this is that
ransomware needs to read data from an SSD before performing
encryption, therefore the pages that have never been read could
not be a piece of damaged data caused by ransomware.

We describe the new GC scheme in Algorithm 1 and discuss its
procedure as follows.
GC procedure: When the number of free blocks in an SSD is
below a threshold (10% - 40% of all the flash blocks in commodity
SSDs), GC will be triggered to free space. The existing GC typically
employs a greedy algorithm for selecting the GC candidate blocks.
More specifically, it chooses the block with the least number of
valid pages. This selection procedure can be quickly completed by
looking up the BVT 3 that tracks the number of valid pages for
each block.

Different from the current block selection scheme for GC can-
didate, RFTL takes those retained invalid pages (RIP has set to be
Reserved in Algorithm 1) as valid pages. Therefore, the GC in RFTL
selects the block with the least number of both valid pages and
retained invalid pages. Such a GC scheme implies that a block with
multiple invalid pages retained for recovery may delay its collec-
tion (see Figure 5), which could reduce the additional GC overhead
caused by copying retained invalid pages to new free blocks.

Once a candidate flash block is selected, RFTL checks the PVT
4 and searches the valid pages in that block. Since lazy policies are
usually adopted to update the PVT, the information in PVT might
be outdated. To address this issue, RFTL double checks each valid
page indicated by PVT by looking at its OOB metadata. It retrieves
the LPA from the OOB metadata and looks up the corresponding
PPA through the address mapping table 1 . If the PPA retrieved is
the same as the PPA of the page, RFTL deems it valid.

Given a candidate flash block, RFTL migrates its valid pages and
retained invalid pages to new free blocks. For those valid pages,
their corresponding mapping entries in 1 are updated and pointed
to the new PPAs. The retained invalid pages will be kept in the
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Block B

#Valid Pages = 2
#RIP Pages = 2

Block C

#Valid Pages = 1
#RIP Pages = 4

Block A

#Valid Pages = 3
#RIP Pages = 0

Valid Page Invalid Page RIP Page

Figure 5:An example of candidate block selection in state-of-
the-art GC vs. RFTL’s GC. Traditionally, block C is selected,
as the number of the valid pages is the least. In RFTL, block
A is selected, since RFTL counts the retained invalid pages
(RIP) as valid pages.

flash device for a certain time (a configurable threshold, 20 days in
FlashGuard by default).

RFTL uses the timestamp stored in the page’s OOB metadata to
calculate how long this page has been retained. Once the interval
between the timestamp in the OOB metadata and the current time
is larger than the configured threshold, the page will be erased
and reclaimed. Otherwise, both the page and its OOB metadata are
copied to a free page, so that RFTL will keep retaining this invalid
page in the SSD until it is expired when it is selected by GC next
time (see line 13-21 in Algorithm 1).

For an invalid page X whose RIP bit is not set and has been read
as indicated in RTT 5 , it is treated as a page to be retained and
will be copied to a free page Y. RFTL runs the GC procedure for
this type of invalid pages as follows:

First, RFTL prepares the OOB metadata for the new page Y : the
RIP bit is set to be Reserved, the timestamp is set to the current time
(so that the content of this page will be conservatively retained for
a certain period of time), the LPA and P-PPA are kept the same as
in page X ’s OOB metadata. Second, RFTL copies the page X and its
OOB metadata into the free page Y in a new free block. Third, page
X ’s read bit in RTT is cleared and page Y ’s read bit in RTT is set to 1
(indicating the content of this page has been read). Finally, the page
X is garbage collected (see line 23-26 in Algorithm 1). After this
procedure, RFTL moves the retained invalid page to a new location
and keeps holding it in the flash device.

For an invalid page which has never been read, RFTL will discard
and garbage collect it (see line 28 in Algorithm 1), which is handled
in the same way as in traditional SSDs.
Impact on SSD performance: The GC scheme in RFTL keeps the
basic and essential procedures in the state-of-the-art FTLs, including
candidate block selection and valid page movement. In our design,
the overhead is introduced by copying retained invalid pages. The
RFTL takes retained invalid pages as valid pages and the GC on the
blocks carrying these pages will be delayed (see Figure 5). Meantime,
RFTL also needs to ensure all the blocks age at the same rate (i.e.,
wear leveling) to extend the lifetime of the SSD. The blocks that
have retained invalid pages, would still be selected as candidate
blocks for GC, thus additional overhead would be introduced.

Algorithm 1 Garbage Collection in RFTL
Input: ReserveT ime = the time threshold for retaining invalid pages

Reserved = the bit flag indicating a page is invalid but retained

1: Select the candidate block for GC ▷

the candidate block has the least number of valid pages and
retained invalid pages.

2: Check PVT to find valid pages in candidate block
3: for each valid page do
4: Check page’s OOB metadata
5: Verify page’s validity
6: if page is valid then
7: Copy page to a new free page
8: Update address mapping entry
9: for each invalid page do
10: Check read tracker table (RTT)
11: if page has been read then
12: Check page’s RIP bit
13: if RIP == Reserved then
14: page_timestamp← timestamp in page’s OOB metadata
15: if current_time - page_timestamp < ReserveTime then
16: Clear this page’s read bit in the bitmap of RTT
17: Copy page and its OOB metadata to a new free page
18: Set the new page’s read bit in RTT to 1 (Read)
19: else
20: Discard and reclaim this page
21: Clear this page’s read bit in the bitmaps of RTT
22: else
23: Set metadata (timestamp←current_time, RIP←Reserved)
24: Clear this page’s read bit in the bitmaps of RTT
25: Copy page and its OOB metadata to a new free page
26: Set the new page’s read bit in RTT to 1 (Read)
27: else
28: Discard and reclaim this page

However, these blocks will not be frequently garbage collected
because of the throttling and swapping mechanisms in the existing
GC design: cold data (i.e., not frequently accessed data) is migrated
to old blocks (i.e., blocks that experience more wear). The blocks
which have many retained invalid pages will be accessed less fre-
quently, and the chance that they will be collected shortly is small.
In addition, if all the pages in a GC candidate block are invalid and
will be retained, RFTL does not garbage collect them.
Impact on SSD lifetime: The SSD lifetime is determined by the
wear-leveling and write traffic to the device. The GC in existing
FTLs uses a greedy policy for candidate block selection, which
always selects the block having the least number of valid pages.
Such a GC policy provides maximal GC efficiency (i.e., the least
page migration), and the throttling and swapping mechanisms are
used to balance the wear between blocks. RFTL employs these
techniques. Moreover, recent research [14, 50] on SSDs discloses
that a relaxed wear-leveling can provide guaranteed SSD lifetime.
Experiments with a variety of real-world workloads demonstrate
that RFTL has minimal impact on SSD lifetime in § 6.

5.4 Data Recovery
To restore the invalid pages retained in an SSD when victims are
aware of the ransomware infection, users can remove the SSD
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Figure 6: FlashGuard can restore all the overwritten pages by
travelling back to their previous versions with the previous
physical page address stored in each page’s OOB metadata.

device and plug it into another clean and isolated computer for
data recovery in case ransomware would attack the data recovery
procedure. FlashGuard first checks the RTT 5 to locate all the
pages that have been read recently. These pages are the candidate
pages that may contain the user’s stale data. As the RTT is cached in
firmware RAM, this checking procedure is fast. To read the retained
invalid page, FlashGuard checks the RIP bit in OOB metadata of
each candidate page. If the RIP bit flag is set, the page is read from
flash. Otherwise, RFTL will check the address mapping table 1 to
figure out whether this page is valid or not. If it is invalid, the page
is read from flash as well, since it is possible that this page is also a
victim page.

We leverage the internal parallelism in an SSD to accelerate
the procedure of reading the reatined invalid pages. Specifically,
FlashGuard can simultaneously read the pages from multiple chips
of an SSD to the host machine, therefore the recovery procedure
will not take too much time (see the evaluation in § 6).

Once these retained invalid pages are read from a flash drive,
the LPAs, P-PPAs, and timestamps stored in these pages’ OOB
metadata will be used to reconstruct the user files. FlashGuard can
use the previous physical page address (P-PPA) stored in each page’s
OOB metadata to reverse an invalid page to its previous versions as
shown in Figure 6. In order tomaintain data locality for performance
reasons, modern file systems usually manage the logical address
space in a contiguous manner, and also flash controllers buffer
storage operations to exploit temporal and spatial locality [22].With
these insights, the recovery tool in FlashGuard sorts the retained
invalid pages with their LBAs and timestamps to reconstruct the
original file. As a page could have been overwritten several times by
either ransomware or trusted users, the recovery tool can reverse
it to any older version and allow users to verify the content.

Since FlashGuard retains all the versions of the invalid pages
in flash device, many other existing data recovery tools can also
be leveraged to reconstruct user files (if there is no information
available for data locality). For example, some recovery tools can
read the first few bytes in each page to figure out the file type (e.g.,
.ppt or .doc file), and then use the defined layout for the file type
to recover the data [7].

5.5 Metadata Recovery
As all the data structures (see Figure 3) are cached in firmware RAM,
the cached data could be lost if a power failure happens. FlashGuard
maintains their durability by leveraging the metadata recovery and
check-pointing techniques that have been adopted in the state-of-
the-art FTLs [8, 16]. RFTL identifies the recent written flash block

by checking its OOB metadata (which includes timestamp as shown
in Figure 4) and use the metadata information to recover the cached
entries such as the address mapping table 1 . For the data structure
RTT 5 that tracks the recent reads, RFTL recovers it to the latest
checkpointed states. For the blocks that have been written after
the checkpoint, RFTL identifies their older versions (with P-PPA in
OOB metadata) and conservatively marks them as ‘read’ in RTT.

An alternative solution is to use a battery or large capacitor to
preserve the cached entries and persist them before power turns
off, which simplifies the metadata recovery procedure significantly.
We wish to take this solution as the future work.

5.6 FlashGuard Implementation
We implement FlashGuard on a programmable SSD with a state-of-
the-art page-level FTL. The size of the SSD is 1 TB. Each block in
the SSD has 64 pages and each page is 4 KB with 16 bytes of OOB
metdata. The programmable SSD provides basic I/O control com-
mands to issue read, write and erase operations against the physical
flash device. The RFTL for FlashGuard is implemented based on
the page-level FTL. FlashGuard is implemented with 5,718 lines
of C code on top of the flash device. The SSD is over-provisioned
with 15% of its full capacity by default, and the garbage collection
is running in background. As we develop FlashGuard as a firmware
solution, once the firmware is flushed into the device controller,
commodity SSDs no longer allow firmware modifications. This
characteristic ensures the integrity of FlashGuard.

We also implement a recovery tool that can read all the retained
invalid pages from flash device and organize them in the manner
as discussed in 5.4. The recovered data will be written back to SSD
after having verified by users.

6 EVALUATION
Our evaluation demonstrates the efficiency of FlashGuard in two
major aspects. First, we measure the effectiveness of deploying
FlashGuard against encryption ransomware. We verify that Flash-
Guard can efficiently recover data locked by various types of en-
cryption ransomware. Second, we evaluate the extra cost that would
be introduced by FlashGuard. Specifically, we show that: (1) Flash-
Guard introduces negligible overhead to the storage operations
from a variety of popular application workloads; (2) FlashGuard
has minimal impact on the SSD lifetime.

6.1 Experimental Setup
To evaluate the capability of FlashGuard to recover data encrypted
by ransomware, we use the 1,477 ransomware samples from 13
families as shown in Table 1. These samples are executed with the
same experimental setup as described in § 2.1. Once a ransom screen
appears, we start to run the recovery tool to recover encrypted data.

To evaluate the impact of FlashGuard on storage performance
and SSD lifetime, we reply five sets of I/O traces collected from a va-
riety of real-world applications (see Table 3): (1) the storage traces
collected from enterprise servers running different applications
(e.g., media server, research project management systems, and print
server) in Microsoft Research at Cambridge for six days [28]; (2) the
storage traces collected from machines running in a department at
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Table 3: A variety of real-world application workloads used
for evaluating FlashGuard. R: Read, W: Write.

Workload Description IO Pattern

FI
U
IO

T
ra
ce

online-
course

course management system of a
department using Moodle R:22.3%, W:77.7%

webmail web interface to the mail server R:18.0%, W:82.0%

home research group activities: devel-
oping, testing, experiments, etc. R:0.9%, W:99.1%

mailserver department mail server traces R:8.6%, W:91.4%
web-

research
research projects management
using Apache web server

R:0.001%,
W:99.999%

web-users web server hosting faculty, staff
and graduate student web sites R:10.0%, W:90.0%

M
ic
ro
so
ft
Se
rv
er
s

hm hardware monitoring R:35.5%, W:64.5%
mds media server R:11.9%, W:88.1%
prn print server R:10.8%, W:89.2%
prxy firewall/web proxy R:3.1%, W:96.9%
rsrch research projects R:9.3%, W:90.7%
src source control R:56.4%, W:43.6%
stg web staging R:15.2%, W:84.8%
ts terminal server R:17.6%, W:82.4%
usr user home directories R:40.4%, W:59.6%
wdev test web server R:20.1%, W:79.9%
web web/SQL server R:29.9%, W:70.1%

M
is
c

postmark mail servers R:83.2%, W:16.8%
IOZone filesystem benchmark R:0.0%, W:100.0%
TPC-C online transaction processing R:75.1%, W:24.9%
TPC-E OLTP of a brokerage firm R:91.8%, W:8.2%
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Figure 7: The total size of the data encrypted by each ran-
somware familiy.

FIU for twenty days [49]; (3) the database workload traces of run-
ning TPC-C benchmark and TPC-E benchmark for eight days [48];
(4) the storage traces of running IOZone benchmark [18] for ten
days; (5) the storage traces of running the Postmark benchmark [29]
for ten days. For each experiment, we first run 50 million mixed
read and write operations to warm up the system and then replay
each trace to collect the performance results.

6.2 Efficiency on Data Recovery
FlashGuard performs the procedure of data recovery following
the approaches discussed in § 5.4. Once the recovery procedure is
finished, we manually verify the pages that have been read from
flash device. All the original versions of the encrypted data can be
found in the flash pages recovered by FlashGuard. Figure 7 displays
the average size of the data recovered from infection by different
families, which ranges from 0.2 GB to 4.1 GB.
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Figure 8: The time of restoring the data that have been en-
crypted by ransomware.

The execution time of restoring the encrypted data ranges from
4.2 seconds to 49.6 seconds as shown in Figure 8. FlashGuard lever-
ages the internal parallelism in flash device to access the retained
invalid pages in parallels. It is noted that the recovery time is not
proportional to the victim data size, as the retained invalid pages are
not evenly distributed across the parallel elements (i.e., chip-level
packages) in flash device. However, the current recovery approach
used in FlashGuard is much faster than the naive approach that
scans the whole flash device (which takes 707.7 seconds).

As most of the ransomware samples do not read and overwrite
user data many times, it takes little time for FlashGuard to recon-
struct the original files. Although encryption ransomware would
attack user data with the knowledge of SSD properties, such as
keeping reading and overwriting user data to an SSD (more cases
will be discussed in § 7), FlashGuard can still restore the encrypted
data since it retains all their older versions.

6.3 Impact on Storage Performance
To understand the impact of FlashGuard on storage performance,
we begin with the default over-provisioning (15% of the SSD’s full
capacity), and run the acknowledged storage traces collected from
real-world applications (see Table 3). We assume all the writes are
encrypted, which means all the invalid pages that have been read
will be retained in SSD. The time of holding these invalid pages
ranges from 2 days to 20 days, the storage latency and throughput
are reported in Figure 9 and Figure 10.

For most of the workloads, the average latency of running them
on FlashGuard is almost the same as that of running them on the
unmodified SSD as shown in Figure 9. For I/O-intensive workloads
including Postmark, TPCC and TPCE, FlashGuard increases the av-
erage latency by up to 6.1%. As the time of holding retained invalid
pages is increased, the average latency is slightly increased. In terms
of I/O throughput, FlashGuard has trivial impact as shown in Fig-
ure 10. For I/O-intensive workloads, the average throughput drops
by up to 0.6%. FlashGuard does not introduce much performance
overhead for several reasons:

First, according to our statistical study on a variety of real-world
storage traces collected over six to twenty days (see Figure 11),
only a small portion (4.1% on average) of the storage operations
have the similar I/O patterns (i.e., read-overwrite operations) as
encryption ransomware. Therefore, FlashGuard retains only a small
amount of invalid pages for regular applications. Second, the RFTL
in FlashGuard delays the GC execution on the flash blocks with
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Figure 9: The average latency of running real-world workloads with FlashGuard vs. Unmodified SSD. The time of holding
retained invalid pages in FlashGuard ranges from 2 days to 20 days. FlashGuard’s average latency is almost the same as that
of the unmodified SSD for a variety of workloads.
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Figure 10: The average throughput of running real-world workloads with FlashGuard vs. Unmodified SSD. FlashGuard has
negligible impact on the I/O throughput for most of these workloads.
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Figure 11: The analytics on the I/O patterns of the real-world
application workloads.

retained invalid pages by counting them as valid pages, which
reduces the chances of moving retained invalid pages. Third, the GC
is executed in background, which allows FTLs schedule GC during
the idle time of flash controller, further reducing the performance
interference caused by GC. Finally, the existing I/O schedulers and
FTLs provide decent GC efficiency (i.e., the valid page movements
during GC procedure) for many workloads. When all the pages
on a flash block are invalid, the flash block will be erased without
incurring any page movement. In FlashGuard, no additional page
movement is required for a flash block whose pages are all retained
invalid pages.

To further understand the performance overhead of FlashGuard,
we profile the GC events and collect statistics on the number of addi-
tional page movements. As shown in Table 4, all the FIU workloads
incur no additional page movements, although the time of holding
the retained invalid pages is set to be 20 days. For the workloads
running in enterprise servers, up to 0.8% of the page movements
are contributed by retaining invalid pages. For those I/O intensive
workloads such as Postmark, TPCC and TPCE, more page move-
ments are introduced. Since the IOZone traces are write-only, no
pages are required to be retained in FlashGuard.

We also investigate how the over-provisioning (i.e., reserve more
free blocks in SSD) affects FlashGuard’s performance. We increase
the over-provisioning ratio from 15% (default setting) to 20% and
30% respectively, and do the performance comparison with the
unmodified SSD. As demonstrated in Figure 12, the average I/O
latency of running a variety of real-world workloads on FlashGuard
is almost the same as that of running theseworkloads on unmodified
SSD, indicating that FlashGuard has negligible negative impact
on regular storage operations. As we increase the ratio of over-
provisioning, the average latency is slightly decreased for both
unmodified SSD and FlashGuard because the storage capacity is
traded for performance. In terms of the storage throughput with
different over-provisioning ratio (not shown in the paper), we reach
the similar conclusion that FlashGuard introduces trivial overhead.
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Table 4: The additional page movements (%) for retaining invalid pages in FlashGuard over the time period from 2 to 10 days.
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Figure 12: The average latency of running real-world workloads when the over-provisioning is changed from 20% to 30%. The
time of holding retained invalid pages is set to be 20 days.

6.4 Impact on SSD Lifetime
As each flash block has limited endurance, it is necessary to ensure
FlashGuard can offer acceptable SSD lifetime. Two metrics are used
to evaluate FlashGuard’s impact on SSD lifetime. (1) The wear
balance measures whether the flash blocks age evenly or not. We
use the standard deviation of the remaining lifetime of all the flash
blocks to evaluate SSD’s wear balance. (2) The write amplification
factor (WAF) [57] evaluates the actual amount of physical write
traffic to the logical amount of write traffic. Larger WAF means that
SSD suffers from more write traffic, indicating that the SSD would
last for a shorter time.

FlashGuard aims to achieve the same wear balance as the unmod-
ified SSD since their basic strategies for GC and block allocation
are the same. During the GC procedure, the hot block (which is
erased frequently) will be swapped with cold block to make sure
the wear balance is well maintained.

The wear balance of FlashGuard is even better than unmodified
SSD for some workloads such as those in enterprise servers (see
Figure 13). This could be because FlashGuard delays GC execution
on some flash blocks, which affects the wear distribution among
the flash blocks. Overall, the experiments with a set of real-world
workload traces demonstrate that FlashGuard could maintain the
wear balance across all the flash blocks as well as that of the state-
of-the-art SSD.

We use another metric WAF to evaluate how FlashGuard can
affect SSD lifetime. As shown in Figure 14, for the storage workloads
running in enterprise and university, the WAF of FlashGuard is the
same as that of unmodified SSD. For IO-intensive workloads, the
WAF is increased by up to 4%. This is because FlashGuard incurs

additional page movements for retaining invalid pages. As the time
of holding the retaining invalid pages in flash device is increased,
the WAF is slightly increased. However this is less of a concern. For
an SSD that usually has a lifetime of 160 - 250 weeks, the slightly
increasedWAF reduces its lifetime by only one or two weeks, which
is acceptable in practice.

7 DISCUSSION AND FUTUREWORK
According to our study in § 2, few encryption ransomware was
developed considering the SSD characteristics. In this section, we
discuss the possible ransomware attacks against FlashGuard and
potential research directions in the future.
Exploiting storage capacity. To support data recovery, Flash-
Guard holds the data potentially encrypted by ransomware and
prevents them from being discarded by garbage collection. Intuition
suggests an attacker can exploit storage capacity and keep writing
to occupy the available space in SSD, forcing FlashGuard to release
its hold. Another potential attack is that a ransomware keeps read-
ing and overwriting data to the SSD in order to cause FlashGuard
to retain a large amount of garbage data. In practice, such attacks
are in vain. FlashGuard refuses to release data hold if the lifespan of
the holding data has not yet expired, even though the SSD is fully
occupied. When such an incident happens, FlashGuard will stop
issuing IO requests when the SSD is full, resulting in the failure
of filesystem operations in OS. Therefore, although ransomware
has the kernel privilege, it cannot prevent a user from noticing the
abnormal events.
Timing attacks. Time is critical for both security and performance
of FlashGuard. The longer FlashGuard holds stale data, the more
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(c) Misc I/O Workloads

Figure 13: The normalized wear balance (lower is better) across all the flash blocks after running real-world workloads.
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Figure 14: The normalized write amplification factor (WAF) of FlashGuard compared to Unmodified SSD (lower is better).

overhead it might impose to I/O operations. To obtain high storage
performance, a user might set the lifespan of holding data relatively
short. In this way, the user is exposed to the threat of ransomware
attacks in that ransomware could slow down the pace of encrypting
data and notifying victims.

As discussed in § 2, ransomware variants have been evolving
to lock up user data and collect ransom rapidly to prevent from
being caught. In § 6, we have already demonstrated that FlashGuard
typically incurs only negligible overhead to regular I/O operations,
even though we set the lifespan of holding data for 20 days. This
implies FlashGuard is effective in defending against the aforemen-
tioned ransomware attacks. This is because it not only significantly
increases the risk of ransomware of being caught but also thwarts
ransomware authors from gaining rewards rapidly. We wish to
explore new detection and defense mechanisms against the timing
attacks in the future.
Secure deletion. FlashGuard retains overwritten contents for the
sake of recovery. Intuitively, this design contradicts to the objec-
tive of secure deletion [24, 37–39, 54], which requires irrecoverable
data deletion from a physical medium. However, we believe Flash-
Guard is compatible with secure deletion. In particular, FlashGuard
can use a user-specified encryption key to encrypt the stale data
potentially overwritten by ransomware. In this way, a user can
still perform data recovery but not worrying about data leakage
because adversaries cannot restore “securely deleted data” without
the encryption key. As future work, we will develop this solution,
making FlashGuard compatible with secure deletion.
Protecting against encryption ransomware on various plat-
forms. FlashGuard leverages the intrinsic properties of Flash to

protect against encryption ransomware, which means its approach
can be applied to any kind of flash-based storage devices to protect
different computing platforms against encryption ransomware. A
typical example is the mobile device which has used Flash to store
personal user data for decades. As the flash devices used on mo-
biles (e.g., eMMC) share the same intrinsic properties as that on
personal computers and enterprise servers (e.g., SSDs) [15, 21, 25],
our approach can be deployed on the mobile platform to enhance
its storage system and protect users against the ever-increasing
threat of mobile ransomware such as Simplocker [2, 26, 35, 43].

8 RELATEDWORK
The lines of work most closely related to FlashGuard are research
on ransomware detection and data recovery.
Ransomware detection. The prior research mainly focuses on
demystifying ransomware attacks [20] and detecting their foot-
prints [19, 44, 45]. Several defense mechanisms have been proposed
and developed. Kharraz et al. proposed UNVEIL [19], a dynamic anal-
ysis system that characterizes encryption ransomware behavior
and detects ransomware footprints by tracking how ransomware
interacts with user data. CryptoDrop [44] is another ransomware
detection system that alerts users when it observes a process that
appears to tamper with a large amount of user data. In addition,
recent research leverages machine learning techniques to perform
ransomware analysis and classification. EldeRan [45] is such an
example which models each program as a set of features and do the
classification to determine if the program is a piece of ransomware.

The mechanisms discussed above offer effective detection of
encryption ransomware. However, they do not provide sufficient,
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proper cure for the damage that has been caused. As such, ran-
somware still locks up a few files. Given that encrypted files might
be vitally important for business operations, the victims may still
have to pay a hefty ransom request in order to minimize the damage.
In this paper, we look beyond ransomware detection and concen-
trate on a solution to offset the damage to user files. To the best of
our knowledge, FlashGuard is the first system designed to reinstate
damage caused by encryption ransomware.
Data recovery. Data recovery techniques might allow users to
restore their data to the copies prior to the encryption. A large
number of backup systems have been proposed [5, 12, 33, 41]. The
ones that have been commonly adopted on Unix systems are dump
and tar utilities. They both support full and incremental backup
strategies [33]. On Microsoft Windows system, the most popular
backup system is Volume Shadow Copy Service that archives user
data on local and external volumes in an incremental manner [41].
Another line of work capable of achieving data recovery are log-
structured file systems [40] and journaling file systems [32]. They
both maintain data updates in persistent logs. Once data loss or
inconsistency occurs, they can recover the data back to previous
states by rolling back the logs.

Apart from the backup systems integrated into modern OSes,
other well-developed backup systems include the IBM Tivoli Stor-
age Manager [5] that performs selective, incremental backup in
conjunction with deduplication, and those cloud based storage
systems [12] that synchronize file updates and creation with the
backup storage running on the cloud.

As a defense mechanism, however none of them is sufficient and
proper. To avoid loss of files newly updated or created, they have
to perform backup frequently. From the perspective of efficiency,
this is particularly time consuming. Since ransomware has already
run with the kernel privilege, the backup systems proposed can
be easily disabled or circumvented. For example, a backup process
that synchronizes user files with a cloud storage can be terminated
by ransomware. In this work, we design and develop firmware-
level data recovery mechanism, making it naturally resistant to
ransomware attacks launched at both user and kernel levels.

Looking beyond file backups, researchers proposed to integrate
proactive defense mechanisms into the existing software systems
recently. ShieldFS [6] monitors the low-level file access activities
to detect ransomware and implements a protection layer with the
copy-on-write mechanism to recover data. PayBreak [23] hooks
crypto functions in the standard libraries to identify the invoca-
tions from ransomware and logs the encryption key for future data
decryption. Similar to the attacks against file backups, ransomware
can easily undermine these mechanisms by disabling them with
kernel privilege or obfuscating the execution of its critical functions.

9 CONCLUSION
In this paper, we develop FlashGuard, a ransomware-tolerant SSD
that retains the data potentially encrypted by ransomware in SSDs.
With FlashGuard, we demonstrate that victims can efficiently rein-
state the damage to their files caused by encryption ransomware.
The design of FlashGuard takes advantage of the intrinsic flash
properties. We show FlashGuard only introduces negligible over-
head to regular storage operations and has trivial impact on SSD

lifetime. In comparison with existing detection mechanisms against
ransomware, FlashGuard is the first firmware-level defense sys-
tem, it is naturally resistant to the ransomware that exploits kernel
vulnerabilities or runs with the kernel privilege.
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